A high sensitive methane QEPAS sensor based on self-designed trapezoidal-head quartz tuning fork and high power diode laser.

Hanxu Ma, Yanjun Chen, Shunda Qiao, Ying He, Yufei Ma
Author Information
  1. Hanxu Ma: National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150000, China.
  2. Yanjun Chen: National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150000, China.
  3. Shunda Qiao: National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150000, China.
  4. Ying He: National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150000, China.
  5. Yufei Ma: National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150000, China.

Abstract

A high sensitive methane (CH) sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) using self-designed trapezoidal-head quartz tuning fork (QTF) and high power diode laser is reported for the first time in this paper. The trapezoidal-head QTF with low resonant frequency ( ) of ∼ 9 kHz, serves as the detection element, enabling longer energy accumulation times. A diode laser with an output power of 10 mW is utilized as the excitation source. A Raman fiber amplifier (RFA) is employed to boost the diode laser power to 300 mW to increase the excitation intensity. Acoustic micro-resonators (AmRs) are designed and placed on both sides of the QTF to form an acoustic standing wave cavity, which increases the acoustic wave intensity and enhances the vibration amplitude of the QTF. Additionally, the long-term stability is analyzed by Allan deviation analysis. When the average time of the sensor system is increased to 150 s, the minimum detection limit (MDL) of the CH-QEPAS sensor system can be improved to 15.5 ppb.

Keywords

References

  1. Opt Express. 2023 Feb 13;31(4):6974-6981 [PMID: 36823943]
  2. Opt Express. 2015 Mar 23;23(6):7574-82 [PMID: 25837095]
  3. Light Sci Appl. 2025 Jan 20;14(1):54 [PMID: 39828747]
  4. Opt Express. 2024 Jan 1;32(1):987-1002 [PMID: 38175118]
  5. Photoacoustics. 2023 Jun 02;31:100518 [PMID: 37325395]
  6. Anal Chem. 2024 Sep 17;96(37):14877-14883 [PMID: 39219057]
  7. eLight. 2024;4(1):18 [PMID: 39415946]
  8. Light Sci Appl. 2024 Oct 28;13(1):299 [PMID: 39465259]
  9. Light Sci Appl. 2024 Mar 8;13(1):70 [PMID: 38453917]
  10. Light Sci Appl. 2024 Jul 15;13(1):163 [PMID: 39004616]
  11. Opt Lett. 2002 Nov 1;27(21):1902-4 [PMID: 18033396]
  12. Opt Express. 2021 Jun 21;29(13):20190-20204 [PMID: 34266113]
  13. Photoacoustics. 2024 Jul 09;38:100634 [PMID: 39100198]
  14. Opt Express. 2019 Nov 25;27(24):35267-35278 [PMID: 31878699]
  15. Opt Express. 2021 Apr 12;29(8):12195-12205 [PMID: 33984984]
  16. Opt Express. 2024 Jul 29;32(16):28183-28194 [PMID: 39538640]
  17. IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Apr;63(4):555-60 [PMID: 26529758]
  18. Light Sci Appl. 2024 May 1;13(1):100 [PMID: 38693126]
  19. Anal Chem. 2024 Oct 22;96(42):16543-16550 [PMID: 39378161]
  20. Light Sci Appl. 2023 Mar 4;12(1):48 [PMID: 36869075]
  21. Analyst. 2014 May 7;139(9):2079-87 [PMID: 24167816]
  22. Molecules. 2022 Oct 01;27(19): [PMID: 36235042]

Word Cloud

Created with Highcharts 10.0.0sensorQTFhighpowerdiodelasertrapezoidal-headsensitivemethanebasedphotoacousticspectroscopyQEPASself-designedquartztuningforktimedetectionexcitationintensityacousticwavesystemCHquartz-enhancedusingreportedfirstpaperlowresonantfrequency9 kHzserveselementenablinglongerenergyaccumulationtimesoutput10 mWutilizedsourceRamanfiberamplifierRFAemployedboost300 mWincreaseAcousticmicro-resonatorsAmRsdesignedplacedsidesformstandingcavityincreasesenhancesvibrationamplitudeAdditionallylong-termstabilityanalyzedAllandeviationanalysisaverageincreased150 sminimumlimitMDLCH-QEPAScanimproved155ppbMethaneQuartz-enhancedSpectroscopyTrapezoidal-head

Similar Articles

Cited By