Network analysis reveals potential mechanisms that determine the cellular identity of keratinocytes and corneal epithelial cells through the Hox/Gtl2-Dio3 miRNA axis.

Yanjie Guo, Weini Wu, Haoyu Chen, Xueqi Wang, Yi Zhang, Shuaipeng Li, Xueyi Yang
Author Information
  1. Yanjie Guo: Life Science College, Luoyang Normal University, Luoyang, Henan, China.
  2. Weini Wu: Life Science College, Luoyang Normal University, Luoyang, Henan, China.
  3. Haoyu Chen: Life Science College, Luoyang Normal University, Luoyang, Henan, China.
  4. Xueqi Wang: Life Science College, Luoyang Normal University, Luoyang, Henan, China.
  5. Yi Zhang: Life Science College, Luoyang Normal University, Luoyang, Henan, China.
  6. Shuaipeng Li: Life Science College, Luoyang Normal University, Luoyang, Henan, China.
  7. Xueyi Yang: Life Science College, Luoyang Normal University, Luoyang, Henan, China.

Abstract

During embryonic development, both corneal epithelial cells (CECs) and keratinocytes (KCs) originate from the surface ectoderm. As a result of this shared origin, corneal epithelial cells may exhibit the same characteristics as the skin epidermis in pathological situations, while keratinocytes are ideal seed cells for tissue-engineered corneas. However, how the identities of keratinocytes and corneal epithelial cells are determined is currently unclear. In this study, to investigate the molecular mechanisms determining the identity of keratinocytes and corneal epithelial cells, small RNA and mRNA sequencing analyses of these two cell types were performed. Analysis of the sequencing data revealed that almost all the miRNAs in the Gtl2-Dio3 imprinting region were highly expressed in keratinocytes and accounted for 30% of all differentially expressed miRNAs (DEMs). Since all the genes in the Gtl2-Dio3 imprinting region form a long polycistronic RNA under the control of the Gtl2 promoter, we next examined the expression of transcription factors and their binding near the Gtl2 locus. The findings indicated that the homeobox family dominated the differentially expressed transcription factors, and almost all genes were silenced in corneal epithelial cells. Transcription binding site prediction and ChIP-seq revealed the binding of Hox proteins near the Gtl2 locus. Analysis of the Gtl-Dio3 miRNA target genes indicated that these miRNAs mainly regulate the Wnt signaling pathway and the PI3K-Akt signaling pathway. The crucial transcription factors in corneal epithelial cells, , , and , are also targets of Gtl-Dio3 miRNAs. Our study revealed potential mechanisms that determine the cellular identity of keratinocytes and corneal epithelial cells through the Hox/Gtl2-Dio3 miRNA axis, which provides a new perspective for understanding the developmental regulation of corneal epithelial cells and the mechanisms of corneal opacity, as well as for establishing the groundwork for promoting the transdifferentiation of keratinocytes into corneal epithelial cells.

Keywords

References

  1. PLoS Genet. 2013;9(1):e1003184 [PMID: 23359544]
  2. Mol Cell. 2018 Dec 20;72(6):970-984.e7 [PMID: 30449723]
  3. Cold Spring Harb Perspect Biol. 2013 Feb 01;5(2): [PMID: 23209129]
  4. BMC Dev Biol. 2013 Jul 02;13:26 [PMID: 23819519]
  5. Genes Dev. 2002 Jun 1;16(11):1423-32 [PMID: 12050119]
  6. J Biol Chem. 2007 Jun 8;282(23):17297-305 [PMID: 17439945]
  7. Development. 2008 Jun;135(12):2161-72 [PMID: 18480165]
  8. J Biol Chem. 2015 Aug 14;290(33):20448-54 [PMID: 26045558]
  9. Trends Genet. 2006 Mar;22(3):165-73 [PMID: 16446010]
  10. Dev Cell. 2009 Jul;17(1):49-61 [PMID: 19619491]
  11. Invest Ophthalmol Vis Sci. 2009 Mar;50(3):1122-8 [PMID: 19029029]
  12. J Dermatol Sci. 2005 Oct;40(1):1-9 [PMID: 16157476]
  13. Mech Dev. 2004 Feb;121(2):157-71 [PMID: 15037317]
  14. Trends Cardiovasc Med. 2013 Jan;23(1):1-4 [PMID: 22939989]
  15. Prog Mol Biol Transl Sci. 2015;134:43-59 [PMID: 26310148]
  16. Mol Vis. 2009 Aug 14;15:1589-93 [PMID: 19693295]
  17. Development. 1995 May;121(5):1433-42 [PMID: 7789273]
  18. Animals (Basel). 2023 Mar 28;13(7): [PMID: 37048437]
  19. Development. 2001 Jun;128(11):2019-30 [PMID: 11493524]
  20. J Vis Exp. 2017 Jul 14;(125): [PMID: 28745643]
  21. J Biol Chem. 2001 Aug 31;276(35):32844-53 [PMID: 11435435]
  22. J Invest Dermatol. 1993 Jul;101(1):3-8 [PMID: 8101208]
  23. Genes Dev. 1995 Nov 1;9(21):2646-58 [PMID: 7590242]
  24. Nature. 1985 Dec 19-1986 Jan 1;318(6047):630-5 [PMID: 4079979]
  25. PLoS Biol. 2023 Oct 19;21(10):e3002336 [PMID: 37856539]
  26. J Biol Chem. 2005 May 6;280(18):17732-6 [PMID: 15760899]
  27. Cell. 1994 Jul 29;78(2):211-23 [PMID: 8044836]
  28. Invest Ophthalmol Vis Sci. 2011 Jun 13;52(7):4158-68 [PMID: 21447684]
  29. J Ophthalmol. 2021 Dec 31;2021:6265553 [PMID: 35003791]
  30. Front Physiol. 2021 Jan 11;11:612230 [PMID: 33505317]
  31. Hum Mol Genet. 2002 Apr 15;11(8):915-22 [PMID: 11971873]
  32. Development. 2013 Oct;140(19):3951-63 [PMID: 24046316]
  33. Elife. 2015 Feb 26;4: [PMID: 25719209]
  34. Science. 2003 Jul 18;301(5631):363-7 [PMID: 12869760]
  35. Stem Cell Res. 2020 Jul;46:101868 [PMID: 32603880]
  36. Cell. 1998 Nov 25;95(5):605-14 [PMID: 9845363]
  37. Nat Rev Cancer. 2010 May;10(5):361-71 [PMID: 20357775]
  38. Mediators Inflamm. 2013;2013:857380 [PMID: 24227910]
  39. Development. 2004 May;131(9):2195-204 [PMID: 15073150]
  40. Biochem Biophys Res Commun. 2006 Oct 13;349(1):59-68 [PMID: 16934749]
  41. J Biol Chem. 2002 Apr 12;277(15):12604-12 [PMID: 11812799]
  42. Am J Hum Genet. 2005 Jun;76(6):1008-22 [PMID: 15846561]
  43. Nature. 1999 Feb 25;397(6721):714-9 [PMID: 10067897]
  44. Hum Mol Genet. 2005 Nov 15;14(22):3347-59 [PMID: 16203745]
  45. Development. 2003 Nov;130(21):5155-67 [PMID: 12944429]
  46. Nat Rev Genet. 2005 Dec;6(12):893-904 [PMID: 16341070]
  47. Trends Genet. 1999 Sep;15(9):371-7 [PMID: 10461206]
  48. Development. 2007 Aug;134(16):2981-9 [PMID: 17626057]
  49. Int J Dev Biol. 1994 Dec;38(4):633-40 [PMID: 7779685]
  50. Organogenesis. 2008 Apr;4(2):60-7 [PMID: 19122781]
  51. Stem Cells Dev. 2009 Jun;18(5):783-92 [PMID: 18808325]
  52. Hum Mol Genet. 2014 Jan 1;23(1):78-89 [PMID: 23945394]
  53. Wiley Interdiscip Rev Dev Biol. 2018 Mar;7(2): [PMID: 29105366]
  54. Signal Transduct Target Ther. 2021 Jan 8;6(1):5 [PMID: 33414365]
  55. J Pathol. 2008 Jan;214(1):114-22 [PMID: 18027901]
  56. Development. 2006 Jun;133(11):2149-54 [PMID: 16672341]
  57. J Invest Dermatol. 1998 Feb;110(2):110-5 [PMID: 9457903]
  58. Dev Dyn. 2013 May;242(5):401-13 [PMID: 23335276]
  59. Ontogenez. 2007 Jul-Aug;38(4):244-53 [PMID: 17915533]
  60. Nature. 2014 Jul 17;511(7509):358-61 [PMID: 25030175]
  61. Nat Commun. 2020 Aug 25;11(1):4239 [PMID: 32843640]
  62. Nature. 2016 Mar 17;531(7594):376-80 [PMID: 26958835]
  63. Nature. 2021 May;593(7860):575-579 [PMID: 33981032]
  64. Int J Dev Biol. 2018;62(11-12):723-732 [PMID: 30604842]
  65. Development. 2000 Dec;127(24):5487-95 [PMID: 11076768]
  66. Nat Rev Mol Cell Biol. 2012 Jan 23;13(2):115-26 [PMID: 22266761]
  67. J Cell Sci. 2017 Mar 15;130(6):1021-1025 [PMID: 28202689]
  68. Biomed Res Int. 2014;2014:591374 [PMID: 25136598]
  69. J Invest Dermatol. 2016 Aug;136(8):1664-1671 [PMID: 27164299]
  70. Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3714-9 [PMID: 15738417]

Word Cloud

Created with Highcharts 10.0.0cornealcellsepithelialkeratinocytesmiRNAsmechanismsidentitygenesrevealedGtl2-Dio3expressedGtl2transcriptionfactorsbindingmiRNAcellularstudyRNAsequencingAnalysisalmostimprintingregiondifferentiallynearlocusindicatedHoxGtl-Dio3signalingpathwaypotentialdetermineHox/Gtl2-Dio3axisembryonicdevelopmentCECsKCsoriginatesurfaceectodermresultsharedoriginmayexhibitcharacteristicsskinepidermispathologicalsituationsidealseedtissue-engineeredcorneasHoweveridentitiesdeterminedcurrentlyunclearinvestigatemoleculardeterminingsmallmRNAanalysestwocelltypesperformeddatahighlyaccounted30%DEMsSinceformlongpolycistroniccontrolpromoternextexaminedexpressionfindingshomeoboxfamilydominatedsilencedTranscriptionsitepredictionChIP-seqproteinstargetmainlyregulateWntPI3K-AktcrucialalsotargetsprovidesnewperspectiveunderstandingdevelopmentalregulationopacitywellestablishinggroundworkpromotingtransdifferentiationNetworkanalysisreveals

Similar Articles

Cited By