Oral Supplementation with the Short-Chain Fatty Acid Acetate Ameliorates Age-Related Arterial Dysfunction in Mice.

Abigail G Longtine, Nathan T Greenberg, Antonio Gonzalez, Alexandra Lindquist, Nicholas S VanDongen, Sophia A Mahoney, Gibraan Rahman, Zachary S Clayton, Brian P Ziemba, Katelyn R Ludwig, Michael E Widlansky, Rob Knight, Douglas R Seals, Vienna E Brunt
Author Information
  1. Abigail G Longtine: Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
  2. Nathan T Greenberg: Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
  3. Antonio Gonzalez: Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
  4. Alexandra Lindquist: Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
  5. Nicholas S VanDongen: Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
  6. Sophia A Mahoney: Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
  7. Gibraan Rahman: Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
  8. Zachary S Clayton: Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
  9. Brian P Ziemba: Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
  10. Katelyn R Ludwig: Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
  11. Michael E Widlansky: Departments of Medicine and Pharmacology and the Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.
  12. Rob Knight: Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
  13. Douglas R Seals: Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
  14. Vienna E Brunt: Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.

Abstract

Adverse changes in the gut microbiome with aging are an emerging mediator of arterial dysfunction, which contributes to cardiovascular disease (CVD) development. We investigated the therapeutic potential of enhancing the bioavailability of gut-derived short-chain fatty acids (SCFAs; produced from dietary fiber) for improving age-related arterial dysfunction. We performed gut microbial whole-genome sequencing in young (3 months) versus old (24 months) male C57BL/6N mice to explore changes in bacterial taxonomic abundance and functional pathways with aging and relations to arterial function. We then supplemented young and old mice with the SCFA acetate in drinking water versus controls and versus a high-fiber diet for 8-10 weeks to test the effects of these interventions on vascular function and explore potential mechanisms. Of the various differences in the gut microbiomes of old mice, lower SCFA-producing capacity (taxonomic abundance and functional pathways) stood out as a key feature related to worse arterial function after adjusting for age. Acetate supplementation and a high-fiber diet reversed ~30% of the age-related increase in aortic pulse wave velocity (stiffness) and fully restored carotid artery endothelium-dependent dilation (endothelial function) to young levels. Acetate and a high-fiber diet reduced age-related increases in systemic inflammation. We also found that improvements in endothelial function were likely mediated by suppressed early growth response-1 signaling using innovative siRNA-based knockdown in isolated arteries. There were no effects of the interventions in young mice. Acetate supplementation was comparably effective for ameliorating arterial dysfunction with aging as a high-fiber diet and thus shows promise for reducing CVD risk in older adults.

References

  1. Circ Res. 2018 Oct 12;123(9):1091-1102 [PMID: 30355158]
  2. Nat Rev Cardiol. 2023 Jan;20(1):24-37 [PMID: 35840742]
  3. Circ Res. 2020 Jul 31;127(4):453-465 [PMID: 32354259]
  4. Nutrients. 2019 Jul 31;11(8): [PMID: 31370376]
  5. Am J Clin Nutr. 2012 Jul;96(1):14-23 [PMID: 22623748]
  6. Eur Heart J. 2022 Feb 10;43(6):518-533 [PMID: 34597388]
  7. J Nutr Biochem. 2022 Jul;105:108999 [PMID: 35346831]
  8. J Physiol. 2021 Feb;599(3):911-925 [PMID: 33103241]
  9. J Gerontol A Biol Sci Med Sci. 2014 Jun;69 Suppl 1:S4-9 [PMID: 24833586]
  10. J Gerontol A Biol Sci Med Sci. 2011 Apr;66(4):409-18 [PMID: 21303813]
  11. Signal Transduct Target Ther. 2023 Apr 19;8(1):157 [PMID: 37072419]
  12. Am J Physiol Heart Circ Physiol. 2020 Dec 1;319(6):H1227-H1233 [PMID: 32986965]
  13. Adv Immunol. 2014;121:91-119 [PMID: 24388214]
  14. Cell Host Microbe. 2020 Aug 12;28(2):180-189 [PMID: 32791111]
  15. Am J Med. 2013 Dec;126(12):1059-67.e1-4 [PMID: 24135514]
  16. Development. 1990 Feb;108(2):281-7 [PMID: 2351070]
  17. Physiol Rep. 2019 Feb;7(4):e14005 [PMID: 30810289]
  18. Diabetes. 2008 Jun;57(6):1470-81 [PMID: 18305141]
  19. Clin Sci (Lond). 2009 Jul 02;117(3):95-109 [PMID: 19566488]
  20. Tissue Eng Part B Rev. 2020 Apr;26(2):116-128 [PMID: 31801418]
  21. Arch Intern Med. 2011 Jun 27;171(12):1061-8 [PMID: 21321288]
  22. Am J Physiol Heart Circ Physiol. 2023 Jun 1;324(6):H893-H904 [PMID: 37115626]
  23. Gut. 2018 Feb;67(2):271-283 [PMID: 28377388]
  24. Nat Commun. 2019 Jun 20;10(1):2719 [PMID: 31222023]
  25. Ageing Res Rev. 2010 Apr;9(2):107-16 [PMID: 19874918]
  26. J Intern Med. 2022 Dec;292(6):915-924 [PMID: 35916742]
  27. JACC Basic Transl Sci. 2022 Aug 31;7(9):934-947 [PMID: 36317128]
  28. Transl Med Aging. 2020;4:103-116 [PMID: 32832742]
  29. Cell. 2023 Jan 19;186(2):243-278 [PMID: 36599349]
  30. BMC Gastroenterol. 2014 Nov 18;14:189 [PMID: 25407511]
  31. Curr Microbiol. 2022 Mar 14;79(5):128 [PMID: 35287182]
  32. Physiol Genomics. 2016 Nov 1;48(11):826-834 [PMID: 27664183]
  33. Front Physiol. 2020 Apr 16;11:277 [PMID: 32372967]
  34. Cell. 2016 Nov 3;167(4):1125-1136.e8 [PMID: 27814509]
  35. Annu Rev Nutr. 2002;22:283-307 [PMID: 12055347]
  36. Front Cardiovasc Med. 2021 Nov 19;8:739093 [PMID: 34869642]
  37. J Am Coll Cardiol. 2019 Sep 3;74(9):1237-1263 [PMID: 31466622]
  38. J Physiol. 2022 Nov;600(21):4633-4651 [PMID: 36111692]
  39. Circ Res. 2018 Sep 14;123(7):825-848 [PMID: 30355078]
  40. Arterioscler Thromb Vasc Biol. 2012 Dec;32(12):2862-8 [PMID: 23087358]
  41. EMBO Mol Med. 2018 Mar;10(3): [PMID: 29374012]
  42. Am J Clin Nutr. 2018 Jun 1;107(6):965-983 [PMID: 29757343]
  43. Circulation. 2023 Feb 21;147(8):e93-e621 [PMID: 36695182]
  44. Microbiome. 2017 Jul 14;5(1):80 [PMID: 28709450]
  45. J Cell Mol Med. 2020 Jul;24(13):7094-7101 [PMID: 32406586]
  46. Trends Microbiol. 2021 Aug;29(8):700-712 [PMID: 33674141]
  47. Cell Mol Immunol. 2022 Dec;19(12):1414-1424 [PMID: 36323929]
  48. mSystems. 2022 Apr 26;7(2):e0016722 [PMID: 35369727]
  49. Nutrients. 2015 Oct 28;7(11):8916-29 [PMID: 26516911]
  50. Vaccine. 2011 Jan 29;29(5):976-83 [PMID: 21115056]
  51. Circulation. 2019 Mar 12;139(11):1407-1421 [PMID: 30586752]
  52. Nat Methods. 2018 Oct;15(10):796-798 [PMID: 30275573]
  53. Clin Nutr. 2018 Jun;37(3):797-807 [PMID: 28410921]
  54. Hypertension. 2002 Jan;39(1):10-5 [PMID: 11799071]
  55. BMC Microbiol. 2016 Jan 16;16:9 [PMID: 26772806]
  56. Front Microbiol. 2016 Feb 17;7:185 [PMID: 26925050]
  57. Circulation. 2003 Jan 7;107(1):139-46 [PMID: 12515756]
  58. Pharmacol Res. 2023 Dec;198:106997 [PMID: 37972724]
  59. Atherosclerosis. 2015 Dec;243(2):638-44 [PMID: 26554714]
  60. Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1451-9 [PMID: 18660454]
  61. Nutr Metab Cardiovasc Dis. 2014 Jun;24(6):606-13 [PMID: 24602606]
  62. Circ Res. 2006 Feb 3;98(2):186-91 [PMID: 16456111]
  63. J Am Heart Assoc. 2021 Nov 16;10(22):e023539 [PMID: 34755520]
  64. Nat Aging. 2022 Oct;2(10):869-871 [PMID: 37118282]
  65. Microbiome. 2013 Jan 09;1(1):2 [PMID: 24467949]
  66. Nutrition. 2018 Jan;45:32-36 [PMID: 29129234]
  67. mSystems. 2022 Apr 26;7(2):e0137821 [PMID: 35293792]
  68. Aging (Albany NY). 2013 Dec;5(12):902-12 [PMID: 24334635]
  69. Nat Rev Immunol. 2013 Nov;13(11):790-801 [PMID: 24096337]
  70. Circ Res. 2004 Feb 20;94(3):333-9 [PMID: 14670837]
  71. Nature. 2011 Apr 7;472(7341):57-63 [PMID: 21475195]
  72. J Cardiovasc Thorac Res. 2017;9(4):183-190 [PMID: 29391930]
  73. NAR Genom Bioinform. 2020 Jun;2(2):lqaa023 [PMID: 32391521]
  74. J R Soc Interface. 2013 Mar 27;10(83):20121004 [PMID: 23536538]
  75. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  76. Circ Res. 2004 May 14;94(9):1203-10 [PMID: 15059935]
  77. Gut. 2020 Dec;69(12):2232-2243 [PMID: 32917747]
  78. Endocrinology. 2012 Aug;153(8):3571-8 [PMID: 22778227]
  79. Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2311422120 [PMID: 37733741]
  80. Front Physiol. 2017 May 30;8:350 [PMID: 28611682]
  81. Nat Rev Microbiol. 2018 Jul;16(7):410-422 [PMID: 29795328]
  82. J Physiol. 2019 May;597(9):2361-2378 [PMID: 30714619]
  83. Circulation. 2017 Mar 7;135(10):964-977 [PMID: 27927713]
  84. Nutrients. 2020 Dec 07;12(12): [PMID: 33297486]
  85. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  86. Nutrients. 2011 Oct;3(10):858-76 [PMID: 22254083]
  87. Am J Physiol Heart Circ Physiol. 2024 Apr 1;326(4):H986-H1005 [PMID: 38363212]
  88. Nat Neurosci. 2022 Mar;25(3):295-305 [PMID: 35241804]
  89. Circulation. 2007 May 8;115(18):2390-7 [PMID: 17452608]
  90. Hypertension. 2020 Jul;76(1):101-112 [PMID: 32520619]
  91. Genes Immun. 2021 Oct;22(5-6):289-303 [PMID: 33875817]

Grants

  1. UL1 TR002535/NCATS NIH HHS
  2. S10 OD026929/NIH HHS
  3. F31 HL164004/NHLBI NIH HHS
  4. R00 HL151818/NHLBI NIH HHS
  5. K99 HL151818/NHLBI NIH HHS
  6. F31 HL160173/NHLBI NIH HHS

Word Cloud

Created with Highcharts 10.0.0arterialfunctionyoungmicehigh-fiberdietAcetategutagingdysfunctionage-relatedversusoldchangesCVDpotentialmonthsexploretaxonomicabundancefunctionalpathwayseffectsinterventionssupplementationendothelialAdversemicrobiomeemergingmediatorcontributescardiovasculardiseasedevelopmentinvestigatedtherapeuticenhancingbioavailabilitygut-derivedshort-chainfattyacidsSCFAsproduceddietaryfiberimprovingperformedmicrobialwhole-genomesequencing324maleC57BL/6NbacterialrelationssupplementedSCFAacetatedrinkingwatercontrols8-10weekstestvascularmechanismsvariousdifferencesmicrobiomeslowerSCFA-producingcapacitystoodkeyfeaturerelatedworseadjustingagereversed~30%increaseaorticpulsewavevelocitystiffnessfullyrestoredcarotidarteryendothelium-dependentdilationlevelsreducedincreasessystemicinflammationalsofoundimprovementslikelymediatedsuppressedearlygrowthresponse-1signalingusinginnovativesiRNA-basedknockdownisolatedarteriescomparablyeffectiveamelioratingthusshowspromisereducingriskolderadultsOralSupplementationShort-ChainFattyAcidAmelioratesAge-RelatedArterialDysfunctionMice

Similar Articles

Cited By