Temporal Dynamics of Cyanobacterial Bloom Community Composition and Toxin Production from Urban Lakes.

Julie A Maurer, Runjie Xia, Andrew M Kim, Nana Oblie, Sierra Hefferan, Hannuo Xie, Angela Slitt, Bethany D Jenkins, Matthew J Bertin
Author Information
  1. Julie A Maurer: Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, United States.
  2. Runjie Xia: Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, United States.
  3. Andrew M Kim: Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, United States.
  4. Nana Oblie: Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, United States.
  5. Sierra Hefferan: Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, United States.
  6. Hannuo Xie: Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, United States.
  7. Angela Slitt: Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, United States.
  8. Bethany D Jenkins: Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, United States. ORCID
  9. Matthew J Bertin: Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, United States. ORCID

Abstract

With a long evolutionary history and a need to adapt to a changing environment, cyanobacteria in freshwater systems use specialized metabolites for communication, defense, and physiological processes. Furthermore, many cyanobacterial specialized metabolites and toxins present significant human health concerns due to their liver toxicity and their potential impact to drinking water. Gaps in knowledge exist with respect to changes in species diversity and toxin production during a cyanobacterial bloom (cyanoHAB) event; addressing these gaps will improve understanding of impacts to public and ecological health. In the current report we detail community and toxin composition dynamics during a late bloom period. Species diversity decreased at all study sites over the course of the bloom event, and toxin production reached a maximum at the midpoint of the event. We also isolated three new microcystins from a dominated bloom (), two of which contained unusual doubly homologated tyrosine residues ( and ). This work provokes intriguing questions with respect to the use of allelopathy by organisms in these systems and the presence of emerging toxic compounds that can impact public health.

Keywords

References

  1. Nat Biotechnol. 2012 Oct;30(10):918-20 [PMID: 23051804]
  2. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  3. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  4. Metabolites. 2019 Mar 22;9(3): [PMID: 30909447]
  5. Harmful Algae. 2023 Jun;125:102433 [PMID: 37220973]
  6. Front Microbiol. 2017 Nov 15;8:2224 [PMID: 29187837]
  7. Toxins (Basel). 2020 Aug 31;12(9): [PMID: 32878042]
  8. Environ Sci Technol. 2015 Dec 15;49(24):14301-10 [PMID: 26567695]
  9. Toxins (Basel). 2023 Mar 31;15(4): [PMID: 37104192]
  10. Aquat Toxicol. 2023 Oct;263:106689 [PMID: 37713741]
  11. Appl Environ Microbiol. 2014 Sep;80(18):5836-43 [PMID: 25038094]
  12. Arch Toxicol. 2017 Jan;91(1):465-480 [PMID: 26984711]
  13. Appl Environ Microbiol. 1997 Aug;63(8):3327-32 [PMID: 9251225]
  14. Nat Methods. 2015 Jun;12(6):523-6 [PMID: 25938372]
  15. Environ Microbiol. 2016 Feb;18(2):316-24 [PMID: 26310611]
  16. Med J Aust. 1983 May 28;1(11):511-4 [PMID: 6405136]
  17. Harmful Algae. 2016 Apr;54:87-97 [PMID: 28073483]
  18. Front Microbiol. 2022 Mar 03;12:796025 [PMID: 35310396]
  19. Sci Total Environ. 2011 Apr 15;409(10):1739-45 [PMID: 21345482]
  20. Toxins (Basel). 2019 Aug 27;11(9): [PMID: 31461939]
  21. J Nat Prod. 2018 Jun 22;81(6):1368-1375 [PMID: 29847132]
  22. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  23. ACS ES T Water. 2023 Nov 30;4(3):844-858 [PMID: 38482341]
  24. Toxins (Basel). 2021 Jan 09;13(1): [PMID: 33435505]
  25. Bioinformatics. 2016 Oct 1;32(19):3047-8 [PMID: 27312411]
  26. Disaster Med Public Health Prep. 2018 Oct;12(5):666-668 [PMID: 29397806]
  27. Water Res. 2021 May 15;196:117017 [PMID: 33765498]
  28. Toxicon. 1992 Nov;30(11):1465-71 [PMID: 1485341]
  29. Mar Drugs. 2019 Nov 15;17(11): [PMID: 31731697]
  30. Nat Biotechnol. 2016 Aug 9;34(8):828-837 [PMID: 27504778]
  31. ISME J. 2009 Mar;3(3):314-25 [PMID: 19020559]
  32. J Appl Phycol. 2017;29(3):1355-1362 [PMID: 28572709]
  33. Chem Commun (Camb). 2010 Jan 7;46(1):153-5 [PMID: 20024324]
  34. J Nat Prod. 2018 Nov 26;81(11):2576-2581 [PMID: 30369239]
  35. Nat Methods. 2022 Feb;19(2):134-136 [PMID: 34862502]
  36. Environ Sci Technol. 2023 Oct 24;57(42):16016-16032 [PMID: 37819800]
  37. Toxins (Basel). 2023 Mar 21;15(3): [PMID: 36977124]
  38. Environ Sci Technol. 2018 Oct 2;52(19):11049-11059 [PMID: 30168717]
  39. Environ Pollut. 2021 Dec 1;290:118056 [PMID: 34488165]
  40. ACS Omega. 2021 Jun 04;6(23):15472-15478 [PMID: 34151125]
  41. Harmful Algae. 2019 Apr;84:84-94 [PMID: 31128816]
  42. Environ Sci Technol. 2017 Aug 15;51(16):8933-8943 [PMID: 28650153]
  43. Front Microbiol. 2019 Apr 16;10:791 [PMID: 31057509]

Grants

  1. P20 GM103430/NIGMS NIH HHS
  2. R21 ES033758/NIEHS NIH HHS

Word Cloud

Created with Highcharts 10.0.0bloomhealthtoxineventcyanobacteriasystemsusespecializedmetabolitescyanobacterialimpactrespectdiversityproductionpublicmicrocystinslongevolutionaryhistoryneedadaptchangingenvironmentfreshwatercommunicationdefensephysiologicalprocessesFurthermoremanytoxinspresentsignificanthumanconcernsduelivertoxicitypotentialdrinkingwaterGapsknowledgeexistchangesspeciescyanoHABaddressinggapswillimproveunderstandingimpactsecologicalcurrentreportdetailcommunitycompositiondynamicslateperiodSpeciesdecreasedstudysitescoursereachedmaximummidpointalsoisolatedthreenewdominatedtwocontainedunusualdoublyhomologatedtyrosineresiduesworkprovokesintriguingquestionsallelopathyorganismspresenceemergingtoxiccompoundscanTemporalDynamicsCyanobacterialBloomCommunityCompositionToxinProductionUrbanLakesDNAmetabarcodingharmfulalgalbloomsmolecularnetworking

Similar Articles

Cited By