Synchronization-based graph spatio-temporal attention network for seizure prediction.

Jie Xiang, Yanan Li, Xubin Wu, Yanqing Dong, Xin Wen, Yan Niu
Author Information
  1. Jie Xiang: College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China.
  2. Yanan Li: College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China.
  3. Xubin Wu: College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China.
  4. Yanqing Dong: College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China.
  5. Xin Wen: College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China.
  6. Yan Niu: College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China. niuyan@tyut.edu.cn.

Abstract

Epilepsy is a common neurological disorder in which abnormal brain waves propagate rapidly in the brain in the form of a graph network during seizures, and seizures are extremely sudden. So, designing accurate and reliable prediction methods can provide early warning for patients, which is crucial for improving their lives. In recent years, a large number of studies have been conducted using deep learning models on epileptic open electroencephalogram (EEG) datasets with good results, but due to individual differences there are still some subjects whose seizure features cannot be accurately captured and are more difficult to differentiate, with poor prediction results. Important time-varying information may be overlooked if only graph space features during seizures are considered. To address these issues, we propose a synchronization-based graph spatio-temporal attention network (SGSTAN). This model effectively leverages the intricate information embedded within EEG recordings through spatio-temporal correlations. Experimental results on public datasets demonstrate the efficacy of our approach. On the CHB-MIT dataset, our method achieves accuracy, specificity, and sensitivity scores of 98.2%, 98.07%, and 97.85%, respectively. In the case of challenging subjects that are difficult to classify, we achieved an outstanding average classification accuracy of 97.59%, surpassing the results of previous studies.

Keywords

References

  1. Curr Opin Neurol. 2017 Apr;30(2):167-173 [PMID: 28118302]
  2. Front Neuroinform. 2021 Aug 19;15:605729 [PMID: 34489667]
  3. Int J Neural Syst. 2023 Nov;33(11):2350056 [PMID: 37899653]
  4. N Engl J Med. 2022 May 12;386(19):1817-1832 [PMID: 35544388]
  5. Nat Rev Neurol. 2021 May;17(5):267-284 [PMID: 33723459]
  6. JAMA Neurol. 2023 Sep 1;80(9):891-902 [PMID: 37399040]
  7. Neurology. 2021 Apr 27;96(17):805-817 [PMID: 33722992]
  8. Int J Neural Syst. 2022 Nov;32(11):2250050 [PMID: 36018337]
  9. Neural Netw. 2018 Sep;105:104-111 [PMID: 29793128]
  10. Sci Transl Med. 2023 Jan 25;15(680):eabp8982 [PMID: 36696482]
  11. Front Neuroinform. 2018 Dec 10;12:95 [PMID: 30618700]
  12. Brain. 2023 Jul 3;146(7):2828-2845 [PMID: 36722219]
  13. Lancet Neurol. 2021 Feb;20(2):127-135 [PMID: 33341149]
  14. Epilepsy Behav. 2010 Aug;18(4):381-7 [PMID: 20646964]
  15. JAMA Neurol. 2023 Jun 1;80(6):605-613 [PMID: 37036702]
  16. Lancet Neurol. 2021 Apr;20(4):316-326 [PMID: 33743240]
  17. Brain Sci. 2023 May 18;13(5): [PMID: 37239292]
  18. IEEE Trans Neural Syst Rehabil Eng. 2023;31:3884-3894 [PMID: 37725738]
  19. IEEE Trans Neural Syst Rehabil Eng. 2021;29:1604-1613 [PMID: 34370668]
  20. Comput Biol Med. 2021 Sep;136:104710 [PMID: 34364257]
  21. IEEE Trans Neural Syst Rehabil Eng. 2023;31:1321-1332 [PMID: 37027542]
  22. IEEE Rev Biomed Eng. 2021;14:139-155 [PMID: 32746369]
  23. IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2711-2720 [PMID: 33147147]
  24. IEEE J Biomed Health Inform. 2020 Feb;24(2):465-474 [PMID: 31395568]
  25. Front Neurosci. 2022 Sep 26;16:982541 [PMID: 36225738]
  26. JAMA. 2022 Apr 5;327(13):1269-1281 [PMID: 35380580]
  27. Int J Neural Syst. 2022 Feb;32(2):2150048 [PMID: 34635034]
  28. BMJ. 2022 Jan 24;376:o64 [PMID: 35074803]
  29. IEEE J Biomed Health Inform. 2022 May;26(5):2147-2157 [PMID: 34962890]
  30. Int J Neural Syst. 2018 Feb;28(1):1750043 [PMID: 28950741]
  31. Int J Neural Syst. 2023 Mar;33(3):2350014 [PMID: 36811492]
  32. Front Neurosci. 2022 Aug 01;16:967116 [PMID: 35979333]
  33. J Neural Eng. 2020 Jun 22;17(3):035004 [PMID: 32375134]
  34. Lancet Neurol. 2022 Jun;21(6):537-550 [PMID: 35430029]
  35. Neuroimage. 2013 Jul 1;74:231-44 [PMID: 23435210]
  36. Front Neurosci. 2023 Aug 22;17:1246995 [PMID: 37674519]
  37. IEEE Rev Biomed Eng. 2023;16:292-306 [PMID: 33523816]
  38. Int J Neural Syst. 2022 Jul;32(7):2250032 [PMID: 35695914]
  39. Health Inf Sci Syst. 2023 Aug 23;11(1):38 [PMID: 37637435]
  40. Clin Neurophysiol. 2006 Sep;117(9):2102-8 [PMID: 16887380]
  41. Brain Topogr. 2019 Jul;32(4):530-549 [PMID: 31037477]

Grants

  1. 62376184/the National Natural Science Functional of China
  2. 62206196/the National Natural Science Functional of China
  3. YDZJSX20231A017/Shanxi Province Free Exploration Basic Research Project
  4. 202103021223035/the Shanxi Province Application Basic Research Plan
  5. 20210302124550/the Shanxi Province Application Basic Research Plan
  6. 2022QN036/Scientific Research Fund of Taiyuan University of Technology

MeSH Term

Humans
Seizures
Electroencephalography
Deep Learning
Epilepsy
Brain
Female
Neural Networks, Computer
Male
Adult

Word Cloud

Created with Highcharts 10.0.0graphnetworkpredictionresultsattentionseizuresspatio-temporalbrainstudiesEEGdatasetssubjectsseizurefeaturesdifficultinformationaccuracy9897EpilepsycommonneurologicaldisorderabnormalwavespropagaterapidlyformextremelysuddendesigningaccuratereliablemethodscanprovideearlywarningpatientscrucialimprovinglivesrecentyearslargenumberconductedusingdeeplearningmodelsepilepticopenelectroencephalogramgooddueindividualdifferencesstillwhoseaccuratelycaptureddifferentiatepoorImportanttime-varyingmayoverlookedspaceconsideredaddressissuesproposesynchronization-basedSGSTANmodeleffectivelyleveragesintricateembeddedwithinrecordingscorrelationsExperimentalpublicdemonstrateefficacyapproachCHB-MITdatasetmethodachievesspecificitysensitivityscores2%07%85%respectivelycasechallengingclassifyachievedoutstandingaverageclassification59%surpassingpreviousSynchronization-basedGraphSeizureSpatio-temporalTransformer

Similar Articles

Cited By

No available data.