The effects of marine heatwaves on a coral reef snapper: insights into aerobic and anaerobic physiology and recovery.

Shannon J McMahon, Philip L Munday, Jennifer M Donelson
Author Information
  1. Shannon J McMahon: ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Douglas, Townsville, Queensland, Australia, 4814. ORCID
  2. Philip L Munday: ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Douglas, Townsville, Queensland, Australia, 4814.
  3. Jennifer M Donelson: ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Douglas, Townsville, Queensland, Australia, 4814.

Abstract

Marine heatwaves (MHWs) are increasing in frequency and intensity. Coral reefs are particularly susceptible to MHWs, which cause mass coral bleaching and mortality. However, little is known about how MHWs affect coral reef fishes. Here, we investigated how MHWs affect the physiology of a coral reef mesopredator, . Specifically, we exposed mature adults to two different MHW intensities, +1°C (29.5°C) and + 2°C (30.5°C) and measured physiological performance at 2 and 4 weeks of exposure and at 2 weeks post-exposure. At these time points, we measured oxygen consumption at rest and after a simulated fishing capture event, recovery time, excess post-exercise oxygen consumption (EPOC) and associated biochemical markers in the blood (baseline lactate, post-capture lactate, glucose, haemoglobin levels and haematocrit proportion). We found that 2 weeks of exposure to MHW conditions increased resting oxygen consumption (+1°C = 23%, +2°C = 37%), recovery time (+1°C = 62%, +2°C = 77%), EPOC (+1°C = 50%, +2°C = 68%), baseline lactate (+1°C = 27%, +2°C = 28%), post-capture lactate (+1°C = 62%, +2°C = 109%) and haemoglobin levels (+1°C = 13%, +2°C = 28%). This pattern was maintained at 4 weeks of exposure except for post-capture lactate which was reduced (+1°C = -37%, +2°C = 27%). In combination, these results suggest a greater reliance on anaerobic glycolysis to maintain homeostasis in MHW conditions. At 2 weeks post-exposure, when compared to control fish, we found that capture oxygen consumption was increased (+1°C = 25%, +2°C = 26%), recovery rate was increased (+2°C = 38%) and haemoglobin was still higher (+1°C = 15%, +2°C = 21%). These results show that MHW conditions have direct physiological demands on adult coral reef snapper and ecologically relevant residual effects can last for at least 2 weeks post-MHW; however, individuals appear to recover from the negative effects experienced during the MHW. This provides new insight into the effects of MHWs on the physiological performance of coral reef fishes.

Keywords

References

  1. Biol Lett. 2012 Apr 23;8(2):266-9 [PMID: 22031723]
  2. J Exp Biol. 2019 Aug 23;222(Pt 16): [PMID: 31444281]
  3. Glob Chang Biol. 2023 May;29(9):2522-2535 [PMID: 36843188]
  4. Nat Commun. 2019 Jun 14;10(1):2624 [PMID: 31201309]
  5. Int J Hyperthermia. 2005 Dec;21(8):681-7 [PMID: 16338849]
  6. Fish Physiol Biochem. 2010 Dec;36(4):1243-52 [PMID: 20499273]
  7. Sci Rep. 2015 Sep 08;5:13830 [PMID: 26345733]
  8. Sci Adv. 2020 Mar 18;6(12):eaay3423 [PMID: 32206711]
  9. Nat Commun. 2018 Apr 10;9(1):1324 [PMID: 29636482]
  10. Sci Rep. 2020 Apr 21;10(1):6678 [PMID: 32317685]
  11. J Pharmacokinet Pharmacodyn. 2016 Jun;43(3):259-74 [PMID: 27039311]
  12. Transfus Med Hemother. 2012 Oct;39(5):302-7 [PMID: 23801920]
  13. Am Nat. 2008 Mar;171(3):E102-18 [PMID: 18271721]
  14. J Exp Biol. 1994 Sep;194(1):225-53 [PMID: 9317687]
  15. J Exp Biol. 2010 Jul 1;213(Pt 13):2177-83 [PMID: 20543115]
  16. Sci Total Environ. 2024 Jan 15;908:168063 [PMID: 37907104]
  17. Paediatr Respir Rev. 2009 Sep;10(3):83-90 [PMID: 19651377]
  18. J Fish Biol. 2016 Jan;88(1):26-50 [PMID: 26603018]
  19. Biochim Biophys Acta. 2010 Nov;1804(11):2089-101 [PMID: 20709194]
  20. Ecol Appl. 2006 Apr;16(2):731-46 [PMID: 16711059]
  21. Biochim Biophys Acta. 1950 Jan;4(1-3):249-69 [PMID: 15403932]
  22. Glob Chang Biol. 2017 Jun;23(6):2230-2240 [PMID: 27809393]
  23. Proc Biol Sci. 2020 Oct 14;287(1936):20201432 [PMID: 33049171]
  24. Sci Rep. 2017 Nov 3;7(1):14999 [PMID: 29101362]
  25. Ecol Lett. 2009 Sep;12(9):982-98 [PMID: 19614756]
  26. Physiol Biochem Zool. 2014 Jan-Feb;87(1):136-47 [PMID: 24457928]
  27. Science. 2001 Sep 21;293(5538):2248-51 [PMID: 11567137]
  28. Nature. 2018 Apr;556(7702):492-496 [PMID: 29670282]
  29. J Exp Biol. 2017 Aug 1;220(Pt 15):2685-2696 [PMID: 28768746]
  30. J Exp Biol. 2016 Jan;219(Pt 2):250-8 [PMID: 26792337]
  31. J Exp Biol. 1996;199(Pt 10):2243-52 [PMID: 9320159]
  32. Sci Rep. 2016 Dec 06;6:38402 [PMID: 27922080]
  33. Sci Rep. 2020 Nov 9;10(1):19359 [PMID: 33168858]
  34. Sci Total Environ. 2023 Mar 10;863:160844 [PMID: 36528094]
  35. J Fish Biol. 2021 Jun;98(6):1496-1508 [PMID: 33111333]
  36. Proc Biol Sci. 2015 Aug 22;282(1813):20150603 [PMID: 26246542]
  37. Nature. 2019 May;569(7754):108-111 [PMID: 31019302]
  38. Nat Clim Chang. 2022 Feb;12(2):179-186 [PMID: 35757518]
  39. Sports Med. 1986 Jan-Feb;3(1):10-25 [PMID: 2868515]
  40. J Exp Biol. 2003 Sep;206(Pt 18):3119-24 [PMID: 12909693]
  41. PLoS One. 2017 Apr 26;12(4):e0175490 [PMID: 28445534]
  42. Annu Rev Physiol. 1995;57:43-68 [PMID: 7778874]
  43. Mar Environ Res. 2020 Oct;161:105054 [PMID: 32823176]
  44. J Anim Ecol. 2014 Nov;83(6):1513-22 [PMID: 24806155]
  45. PeerJ. 2014 Apr 10;2:e346 [PMID: 24765580]
  46. Philos Trans R Soc Lond B Biol Sci. 2024 Feb 26;379(1896):20220488 [PMID: 38186278]
  47. Science. 2008 Jun 6;320(5881):1296-7 [PMID: 18535231]
  48. Nature. 2018 Aug;560(7718):360-364 [PMID: 30111788]
  49. Conserv Physiol. 2016 Mar 23;4(1):cow009 [PMID: 27382472]
  50. J Exp Biol. 2003 Oct;206(Pt 20):3569-79 [PMID: 12966048]
  51. Glob Chang Biol. 2017 Feb;23(2):566-577 [PMID: 27593976]
  52. J Exp Biol. 2015 Jun;218(Pt 12):1856-66 [PMID: 26085663]
  53. Glob Chang Biol. 2014 Apr;20(4):1055-66 [PMID: 24281840]
  54. J Exp Biol. 2010 Nov 15;213(Pt 22):3802-9 [PMID: 21037059]
  55. Nature. 2017 Mar 15;543(7645):373-377 [PMID: 28300113]
  56. Comp Biochem Physiol A Mol Integr Physiol. 2013 Oct;166(2):237-43 [PMID: 23774589]
  57. J Fish Biol. 2020 Aug;97(2):328-340 [PMID: 32441327]
  58. Front Physiol. 2013 Nov 12;4:332 [PMID: 24273518]
  59. Proc Natl Acad Sci U S A. 2004 Jun 22;101(25):9177-8 [PMID: 15199186]
  60. J Exp Biol. 2010 Mar 15;213(6):881-93 [PMID: 20190113]
  61. Glob Chang Biol. 2014 Apr;20(4):1067-74 [PMID: 24277276]
  62. Biochem J. 2011 Apr 15;435(2):297-312 [PMID: 21726199]
  63. J Exp Biol. 2004 Jan;207(Pt 1):95-112 [PMID: 14638837]
  64. J Postgrad Med. 1992 Jan-Mar;38(1):8-9 [PMID: 1512732]
  65. J Exp Biol. 2003 Sep;206(Pt 18):3253-60 [PMID: 12909706]
  66. Nature. 2018 Aug;560(7716):92-96 [PMID: 30046108]
  67. Br J Sports Med. 2013 Dec;47 Suppl 1:i26-30 [PMID: 24282203]
  68. Ecol Evol. 2017 Mar 18;7(8):2626-2635 [PMID: 28428853]
  69. Elife. 2021 Jan 26;10: [PMID: 33496262]
  70. Comp Biochem Physiol C Toxicol Pharmacol. 2006 May;143(1):30-5 [PMID: 16423562]
  71. J Exp Biol. 2014 Jul 1;217(Pt 13):2348-57 [PMID: 25141346]
  72. J Fish Biol. 2016 Jan;88(1):81-121 [PMID: 26768973]
  73. J Exp Biol. 2013 Aug 1;216(Pt 15):2771-82 [PMID: 23842625]
  74. Glob Chang Biol. 2021 Mar;27(6):1214-1225 [PMID: 33340216]

Word Cloud

Created with Highcharts 10.0.0coralweekslactateMHWsreefMHW2recoveryoxygenconsumptionhaemoglobineffectsphysiologicalexposuretimecapturepost-captureconditionsincreasedheatwavesaffectfishesphysiology5°Cmeasuredperformance4post-exposureEPOCbaselinelevelsfound+1°C = 62%+2°C = 28%resultsanaerobicMarineincreasingfrequencyintensityCoralreefsparticularlysusceptiblecausemassbleachingmortalityHoweverlittleknowninvestigatedmesopredatorSpecificallyexposedmatureadultstwodifferentintensities+1°C29and + 2°C30pointsrestsimulatedfishingeventexcesspost-exerciseassociatedbiochemicalmarkersbloodglucosehaematocritproportionresting+1°C = 23%+2°C = 37%+2°C = 77%+1°C = 50%+2°C = 68%+1°C = 27%+2°C = 109%+1°C = 13%patternmaintainedexceptreduced+1°C = -37%+2°C = 27%combinationsuggestgreaterrelianceglycolysismaintainhomeostasiscomparedcontrolfish+1°C = 25%+2°C = 26%rate+2°C = 38%stillhigher+1°C = 15%+2°C = 21%showdirectdemandsadultsnapperecologicallyrelevantresidualcanlastleastpost-MHWhoweverindividualsappearrecovernegativeexperiencedprovidesnewinsightmarinesnapper:insightsaerobicAerobicmetabolismstress

Similar Articles

Cited By