Electrochemical and chemical dealloying of nanoporous anode materials for energy storage applications.

Muhammad Afiq Irfan Mohd Shumiri, Abdillah Sani Mohd Najib, Andi Erwin Eka Putra, Nor Akmal Fadil
Author Information
  1. Muhammad Afiq Irfan Mohd Shumiri: Materials Research and Consultancy Group, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia. ORCID
  2. Abdillah Sani Mohd Najib: Materials Research and Consultancy Group, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia. ORCID
  3. Andi Erwin Eka Putra: Battery and Advanced Materials Research Center, Hasanuddin University, Makassar, Indonesia.
  4. Nor Akmal Fadil: Materials Research and Consultancy Group, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia. ORCID

Abstract

Traditionally employed in alloy corrosion studies, dealloying has evolved into a versatile technique for fabricating advanced porous materials. The unique architecture of interconnected pore channels and continuous metal ligaments endows dealloyed materials with high surface-to-volume ratio, excellent electron conductivity, efficient mass transport and remarkable catalytic activity, positioning them at the forefront of nanomaterial applications with significant potential. However, reproducible synthesis of these structures remains challenging due to limitations in conventional dealloying techniques. Herein, this review attempts to consolidate recent progress in electrochemical and chemical dealloying methods for nanoporous anodes in energy storage and conversion applications. We begin by elucidating the fundamental mechanisms driving dealloying and evaluate key factors influencing dealloying conditions. Through a review of current research, we identify critical properties of dealloyed nanoporous anodes that warrant further investigation. Applications of these materials as anodes in metal-ion batteries, supercapacitors, water splitting and photocatalyst are discussed. Lastly, we address ongoing challenges in this field and propose perspectives on promising research directions. This review aims to inspire new pathways and foster the development of efficient dealloyed porous anodes for sustainable energy technologies.

Keywords

References

  1. ACS Appl Mater Interfaces. 2020 Dec 23;12(51):57071-57078 [PMID: 33259713]
  2. Nanoscale. 2024 Apr 4;16(14):6915-6933 [PMID: 38501969]
  3. ACS Appl Mater Interfaces. 2020 Jan 15;12(2):2793-2804 [PMID: 31846299]
  4. ACS Nano. 2013 Jul 23;7(7):5948-54 [PMID: 23789979]
  5. Nature. 2001 Mar 22;410(6827):450-3 [PMID: 11260708]
  6. Adv Mater. 2020 Oct;32(42):e2002976 [PMID: 32914499]
  7. Nanoscale. 2021 Nov 4;13(42):17725-17736 [PMID: 34515717]
  8. Materials (Basel). 2020 Aug 21;13(17): [PMID: 32825732]
  9. Nanoscale Adv. 2022 Nov 28;5(2):393-404 [PMID: 36756274]
  10. Molecules. 2024 Jan 31;29(3): [PMID: 38338408]
  11. Natl Sci Rev. 2020 Aug 24;7(11):1667-1701 [PMID: 34691502]
  12. Acc Chem Res. 2023 Aug 15;56(16):2213-2224 [PMID: 37527443]
  13. Materials (Basel). 2022 Mar 13;15(6): [PMID: 35329563]
  14. Chemistry. 2016 Sep 12;22(38):13563-74 [PMID: 27561365]
  15. J Hazard Mater. 2012 Apr 15;211-212:30-46 [PMID: 22172459]
  16. Small Methods. 2025 Jan;9(1):e2400729 [PMID: 39097950]
  17. Sci Rep. 2015 Dec 09;5:18125 [PMID: 26648397]
  18. Langmuir. 2004 Aug 3;20(16):6658-67 [PMID: 15274570]
  19. Materials (Basel). 2024 Jan 18;17(2): [PMID: 38255621]
  20. Membranes (Basel). 2020 Jul 29;10(8): [PMID: 32751246]
  21. Top Curr Chem (Cham). 2019 Jan 10;377(1):5 [PMID: 30631969]
  22. Nat Commun. 2020 Apr 2;11(1):1634 [PMID: 32242024]
  23. Adv Mater. 2024 Jun;36(26):e2403803 [PMID: 38598181]
  24. ACS Nano. 2018 Mar 27;12(3):2900-2908 [PMID: 29529362]
  25. ACS Nano. 2020 Feb 25;14(2):1243-1295 [PMID: 31895532]
  26. RSC Adv. 2018 Apr 9;8(24):13075-13082 [PMID: 35542559]
  27. J Mater Chem. 2012;22(14):6733-6745 [PMID: 22822294]
  28. Nanomicro Lett. 2022 Jun 14;14(1):128 [PMID: 35699828]
  29. Nat Commun. 2023 Sep 27;14(1):6024 [PMID: 37758706]
  30. ACS Nano. 2018 Apr 24;12(4):3568-3577 [PMID: 29608846]
  31. Nanoscale. 2024 May 16;16(19):9603-9616 [PMID: 38683029]

Word Cloud

Created with Highcharts 10.0.0dealloyingmaterialsanodesenergyporousdealloyedapplicationsreviewnanoporousstorageefficientchemicalresearchElectrochemicalanodeTraditionallyemployedalloycorrosionstudiesevolvedversatiletechniquefabricatingadvanceduniquearchitectureinterconnectedporechannelscontinuousmetalligamentsendowshighsurface-to-volumeratioexcellentelectronconductivitymasstransportremarkablecatalyticactivitypositioningforefrontnanomaterialsignificantpotentialHoweverreproduciblesynthesisstructuresremainschallengingduelimitationsconventionaltechniquesHereinattemptsconsolidaterecentprogresselectrochemicalmethodsconversionbeginelucidatingfundamentalmechanismsdrivingevaluatekeyfactorsinfluencingconditionscurrentidentifycriticalpropertieswarrantinvestigationApplicationsmetal-ionbatteriessupercapacitorswatersplittingphotocatalystdiscussedLastlyaddressongoingchallengesfieldproposeperspectivespromisingdirectionsaimsinspirenewpathwaysfosterdevelopmentsustainabletechnologiesmodificationscyclestabilityfunctionalizedperformancestructure

Similar Articles

Cited By