Volatile Organic Compounds of Diverse Origins and Their Changes Associated With Cultivar Decay in a Fungus-Farming Termite.

Nanna Hjort Vidkjær, Suzanne Schmidt, Cleo Lisa Davie-Martin, Kolotchèlèma Simon Silué, N'golo Abdoulaye Koné, Riikka Rinnan, Michael Poulsen
Author Information
  1. Nanna Hjort Vidkjær: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark. ORCID
  2. Suzanne Schmidt: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
  3. Cleo Lisa Davie-Martin: Section for Terrestrial Ecology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
  4. Kolotchèlèma Simon Silué: Department of Natural Sciences (UFR-SN), Nangui Abrogoua University, Abidjan, Côte d'Ivoire.
  5. N'golo Abdoulaye Koné: Department of Natural Sciences (UFR-SN), Nangui Abrogoua University, Abidjan, Côte d'Ivoire.
  6. Riikka Rinnan: Section for Terrestrial Ecology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
  7. Michael Poulsen: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.

Abstract

Fungus-farming termites cultivate a Termitomyces fungus monoculture in enclosed gardens (combs) free of other fungi, except during colony declines, where Pseudoxylaria spp. stowaway fungi appear and take over combs. Here, we determined Volatile Organic Compounds (VOCs) of healthy Macrotermes bellicosus nests in nature and VOC changes associated with comb decay during Pseudoxylaria takeover. We identified 443 VOCs and unique volatilomes across samples and nest volatilomes that were mainly composed of fungus comb VOCs with termite contributions. Few comb VOCs were linked to chemical changes during decay, but longipinocarvone and longiverbenone were only emitted during comb decay. These terpenes may be involved in Termitomyces defence against antagonistic fungi or in fungus-termite signalling of comb state. Both comb and Pseudoxylaria biomass volatilomes contained many VOCs with antimicrobial activity that may serve in maintaining healthy Termitomyces monocultures or aid in the antagonistic takeover by Pseudoxylaria during colony decline. We further observed a series of oxylipins with known functions in the regulation of fungus germination, growth, and secondary metabolite production. Our volatilome map of the fungus-farming termite symbiosis provides new insights into the chemistry regulating complex interactions and serves as a valuable guide for future work on the roles of VOCs in symbioses.

Keywords

References

  1. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W652-60 [PMID: 19429898]
  2. Sci Rep. 2013 Nov 19;3:3250 [PMID: 24248063]
  3. ISME J. 2023 May;17(5):733-747 [PMID: 36841903]
  4. FEMS Microbiol Lett. 2008 Jul;284(2):231-6 [PMID: 18510561]
  5. Mycology. 2014 Jun;5(2):73-80 [PMID: 24999439]
  6. Ecotoxicol Environ Saf. 1995 Mar;30(2):120-3 [PMID: 7539364]
  7. Sci Rep. 2019 Jun 19;9(1):8819 [PMID: 31217550]
  8. J Chromatogr A. 2017 Jun 23;1503:57-64 [PMID: 28499599]
  9. Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16631-6 [PMID: 20733068]
  10. J Chromatogr A. 2020 Aug 2;1624:461191 [PMID: 32540059]
  11. J Chem Ecol. 1994 Oct;20(10):2551-63 [PMID: 24241831]
  12. Appl Environ Microbiol. 2004 May;70(5):2823-9 [PMID: 15128538]
  13. Microb Ecol. 2016 Jan;71(1):207-20 [PMID: 26518432]
  14. Nat Rev Microbiol. 2021 Jun;19(6):391-404 [PMID: 33526910]
  15. Insects. 2019 Jun 26;10(7): [PMID: 31247889]
  16. Protein Sci. 2003 Mar;12(3):438-46 [PMID: 12592014]
  17. J Chem Ecol. 2017 Oct;43(10):986-995 [PMID: 29124530]
  18. Commun Biol. 2024 Oct 5;7(1):1269 [PMID: 39369058]
  19. BMC Bioinformatics. 2015 May 22;16:169 [PMID: 25994840]
  20. Sci Rep. 2020 May 4;10(1):7424 [PMID: 32366829]
  21. Mol Ecol. 2009 Feb;18(3):553-67 [PMID: 19161474]
  22. J Exp Bot. 2022 Jan 13;73(2):445-448 [PMID: 35024870]
  23. Appl Microbiol Biotechnol. 2010 Feb;85(6):1935-46 [PMID: 20101489]
  24. Mol Ecol Resour. 2013 Mar;13(2):218-24 [PMID: 23350562]
  25. mSystems. 2022 Feb 22;7(1):e0121421 [PMID: 35014870]
  26. Metabolites. 2021 Dec 04;11(12): [PMID: 34940597]
  27. FEBS J. 2011 Apr;278(7):1047-63 [PMID: 21281447]
  28. Evid Based Complement Alternat Med. 2021 Oct 19;2021:3025848 [PMID: 34712341]
  29. PLoS Biol. 2023 Feb 21;21(2):e3001887 [PMID: 36802386]
  30. J Food Prot. 2003 Aug;66(8):1503-5 [PMID: 12929847]
  31. J Microbiol Methods. 2020 Feb;169:105835 [PMID: 31917975]
  32. Mol Inform. 2011 Mar 14;30(2-3):276-85 [PMID: 27466781]
  33. STAR Protoc. 2022 Jan 24;3(1):101126 [PMID: 35112085]
  34. Chemosphere. 2008 Jun;72(3):365-80 [PMID: 18471857]
  35. Fungal Genet Biol. 2011 Jan;48(1):4-14 [PMID: 20519150]
  36. mSphere. 2021 Mar 3;6(2): [PMID: 33658277]
  37. Nat Prod Rep. 2022 Feb 23;39(2):231-248 [PMID: 34879123]
  38. Org Lett. 2017 Mar 3;19(5):1000-1003 [PMID: 28207275]
  39. Annu Rev Microbiol. 2020 Sep 8;74:101-116 [PMID: 32905756]
  40. Int J Mol Sci. 2017 Dec 12;18(12): [PMID: 29231889]
  41. Commun Chem. 2023 Apr 24;6(1):79 [PMID: 37095327]
  42. AMB Express. 2014 Jul 15;4:53 [PMID: 25045602]
  43. Fungal Biol. 2011 Apr-May;115(4-5):393-400 [PMID: 21530921]
  44. Front Plant Sci. 2022 Sep 16;13:823233 [PMID: 36186042]
  45. Biol Lett. 2006 Jun 22;2(2):209-12 [PMID: 17148364]
  46. Org Lett. 2016 Jul 15;18(14):3338-41 [PMID: 27341414]
  47. J Chem Ecol. 1983 Jan;9(1):143-58 [PMID: 24408627]
  48. Science. 2009 Nov 20;326(5956):1103-6 [PMID: 19965427]
  49. Proc Biol Sci. 2017 Jul 26;284(1859): [PMID: 28747483]
  50. Beilstein J Org Chem. 2016 Feb 19;12:314-27 [PMID: 26977191]

Grants

  1. ERC-CoG 771349/European Research Council
  2. DNRF168/The Danish National Research Foundation

MeSH Term

Animals
Volatile Organic Compounds
Isoptera
Termitomyces
Terpenes

Chemicals

Volatile Organic Compounds
Terpenes

Word Cloud

Created with Highcharts 10.0.0VOCscombPseudoxylariaTermitomycesfungusfungidecayvolatilomescombscolonyVolatileOrganicCompoundshealthyMacrotermesbellicosuschangestakeovertermiteterpenesmayantagonisticsymbiosisFungus-farmingtermitescultivatemonocultureenclosedgardensfreeexceptdeclinessppstowawayappeartakedeterminednestsnatureVOCassociatedidentified443uniqueacrosssamplesnestmainlycomposedcontributionslinkedchemicallongipinocarvonelongiverbenoneemittedinvolveddefencefungus-termitesignallingstatebiomasscontainedmanyantimicrobialactivityservemaintainingmonoculturesaiddeclineobservedseriesoxylipinsknownfunctionsregulationgerminationgrowthsecondarymetaboliteproductionvolatilomemapfungus-farmingprovidesnewinsightschemistryregulatingcomplexinteractionsservesvaluableguidefutureworkrolessymbiosesDiverseOriginsChangesAssociatedCultivarDecayFungus-FarmingTermiteMacrotermitinae

Similar Articles

Cited By