Multiple machine learning-based integrations of multi-omics data to identify molecular subtypes and construct a prognostic model for HNSCC.

Xiaoqin Luo, Chao Li, Gang Qin
Author Information
  1. Xiaoqin Luo: Department of Otolaryngology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
  2. Chao Li: Department of Otolaryngology, University of Electronic Science and Technology of China, Chengdu, 611731, China. lichao@uestc.edu.cn.
  3. Gang Qin: Department of Otolaryngology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China. qingang636@swmu.edu.cn.

Abstract

BACKGROUND: Immunotherapy has introduced new breakthroughs in improving the survival of head and neck squamous cell carcinoma (HNSCC) patients, yet drug resistance remains a critical challenge. Developing personalized treatment strategies based on the molecular heterogeneity of HNSCC is essential to enhance therapeutic efficacy and prognosis.
METHODS: We integrated four HNSCC datasets (TCGA-HNSCC, GSE27020, GSE41613, and GSE65858) from TCGA and GEO databases. Using 10 multi-omics consensus clustering algorithms via the MOVICS package, we identified two molecular subtypes (CS1 and CS2) and validated their stability. A machine learning-driven prognostic signature was constructed by combining 101 algorithms, ultimately selecting 30 prognosis-related genes (PRGs) with the Elastic Net model. This signature was further linked to immune infiltration, functional pathways, and therapeutic sensitivity.
RESULTS: CS1 exhibited superior survival outcomes in both TCGA and META-HNSCC cohorts. The PRG-based signature stratified patients into low- and high-risk groups, with the low-risk group showing prolonged survival, enhanced immune cell infiltration (B cells, T cells, monocytes), and activated immune functions (cytolytic activity, T cell co-stimulation). High-risk patients were more sensitive to radiotherapy and chemotherapy (e.g., Cisplatin, 5-Fluorouracil), while low-risk patients responded better to immunotherapy and targeted therapies.
CONCLUSION: Our study delineates two molecular subtypes of HNSCC and establishes a robust prognostic model using multi-omics data and machine learning. These findings provide a framework for personalized treatment selection, offering clinical insights to optimize therapeutic strategies for HNSCC patients.

Keywords

References

  1. Pharmaceutics. 2022 Mar 09;14(3): [PMID: 35335975]
  2. Science. 2015 Apr 3;348(6230):74-80 [PMID: 25838376]
  3. Front Genet. 2022 Dec 12;13:1085700 [PMID: 36579330]
  4. Elife. 2017 Nov 13;6: [PMID: 29130882]
  5. J Clin Med. 2023 Feb 18;12(4): [PMID: 36836180]
  6. J Cancer. 2018 Jun 23;9(15):2650-2658 [PMID: 30087705]
  7. PLoS One. 2010 Nov 23;5(11):e15543 [PMID: 21124904]
  8. Bioinformatics. 2012 Mar 15;28(6):882-3 [PMID: 22257669]
  9. Sci Rep. 2023 May 9;13(1):7480 [PMID: 37161060]
  10. N Engl J Med. 2016 Nov 10;375(19):1856-1867 [PMID: 27718784]
  11. Int J Cancer. 2015 Dec 15;137(12):2846-57 [PMID: 26095926]
  12. Exp Mol Med. 2018 Dec 13;50(12):1-11 [PMID: 30546008]
  13. Lancet. 2021 Dec 18;398(10318):2289-2299 [PMID: 34562395]
  14. PLoS One. 2013 Aug 09;8(8):e70429 [PMID: 23950933]
  15. J Stat Softw. 2010;33(1):1-22 [PMID: 20808728]
  16. Bioinformatics. 2015 Feb 1;31(3):397-404 [PMID: 25286920]
  17. Innovation (Camb). 2021 Jul 01;2(3):100141 [PMID: 34557778]
  18. Ann Transl Med. 2022 Dec;10(24):1316 [PMID: 36660709]
  19. Int J Gen Med. 2021 Nov 04;14:7669-7679 [PMID: 34764680]
  20. Int J Mol Sci. 2020 Dec 29;22(1): [PMID: 33383632]
  21. Front Genet. 2021 Sep 03;12:698040 [PMID: 34539737]
  22. Front Genet. 2021 Jul 12;12:685104 [PMID: 34322156]
  23. Genome Res. 2018 Nov;28(11):1747-1756 [PMID: 30341162]
  24. Expert Rev Anticancer Ther. 2021 Dec;21(12):1321-1331 [PMID: 34689660]
  25. Cancer Sci. 2018 Nov;109(11):3416-3427 [PMID: 30151927]
  26. FEBS J. 2022 Oct;289(20):6099-6118 [PMID: 34145969]
  27. J Clin Oncol. 2015 Oct 10;33(29):3328-37 [PMID: 26351351]
  28. Genome Med. 2019 May 24;11(1):34 [PMID: 31126321]
  29. Clin Med Insights Ear Nose Throat. 2012 Apr 03;5:1-16 [PMID: 24179404]
  30. Ann Oncol. 2020 Jul;31(7):942-950 [PMID: 32294530]
  31. Gastric Cancer. 2021 Mar;24(2):327-340 [PMID: 32924090]
  32. Oncol Lett. 2018 May;15(5):7497-7505 [PMID: 29725456]
  33. Biochim Biophys Acta Rev Cancer. 2023 Sep;1878(5):188940 [PMID: 37331641]
  34. Nat Methods. 2015 May;12(5):453-7 [PMID: 25822800]
  35. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  36. Cancer Med. 2022 Dec;11(24):5129-5144 [PMID: 35574984]
  37. Sci Rep. 2024 Dec 28;14(1):31454 [PMID: 39732954]
  38. Brief Bioinform. 2021 Nov 5;22(6): [PMID: 34260682]
  39. Cell Signal. 2024 Dec 11;127:111562 [PMID: 39672353]
  40. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  41. Drug Des Devel Ther. 2019 Feb 05;13:539-553 [PMID: 30787595]
  42. Cancer Treat Rev. 2020 Jun;86:102019 [PMID: 32251926]
  43. PLoS One. 2017 May 1;12(5):e0176278 [PMID: 28459819]
  44. Cells. 2022 Aug 16;11(16): [PMID: 36010616]
  45. Clin Cancer Res. 2013 Mar 1;19(5):1197-203 [PMID: 23319825]
  46. Nat Rev Dis Primers. 2020 Nov 26;6(1):92 [PMID: 33243986]
  47. Am J Cancer Res. 2024 Jun 15;14(6):2823-2838 [PMID: 39005693]
  48. PLoS One. 2012;7(8):e43265 [PMID: 22912841]
  49. Front Genet. 2022 Jun 09;13:907985 [PMID: 35754840]
  50. Front Immunol. 2016 Dec 12;7:550 [PMID: 28018338]
  51. Oncol Rep. 2017 Dec;38(6):3403-3411 [PMID: 29130107]
  52. Science. 2008 Oct 10;322(5899):271-5 [PMID: 18845758]
  53. Mol Ther Nucleic Acids. 2023 Jun 05;33:110-126 [PMID: 37449047]
  54. Hum Genomics. 2015 Oct 19;9:27 [PMID: 26481255]
  55. Comput Struct Biotechnol J. 2021 May 01;19:2719-2725 [PMID: 34093987]
  56. Cell. 2023 Apr 13;186(8):1814-1814.e1 [PMID: 37059073]
  57. Sci Rep. 2023 Nov 15;13(1):19939 [PMID: 37968308]
  58. Bioinformatics. 2016 Sep 15;32(18):2847-9 [PMID: 27207943]
  59. Lancet. 2019 Nov 23;394(10212):1915-1928 [PMID: 31679945]
  60. Ann Oncol. 2019 Oct 1;30(10):1622-1629 [PMID: 31504112]
  61. Front Genet. 2022 Aug 24;13:927614 [PMID: 36092911]
  62. Nucleic Acids Res. 2021 Jan 8;49(D1):D1420-D1430 [PMID: 33179754]
  63. Oral Oncol. 2019 Dec;99:104460 [PMID: 31683169]
  64. Tumour Biol. 2013 Oct;34(5):2617-24 [PMID: 23657964]
  65. Nat Immunol. 2018 Jul;19(7):723-732 [PMID: 29915296]
  66. Proteomes. 2023 Oct 20;11(4): [PMID: 37873876]
  67. Cancer Cell Int. 2022 Feb 5;22(1):62 [PMID: 35123464]
  68. Mol Cancer. 2023 Jun 8;22(1):93 [PMID: 37291608]
  69. J Cancer Res Clin Oncol. 2024 Feb 12;150(2):91 [PMID: 38347320]
  70. Front Mol Biosci. 2022 Oct 20;9:912620 [PMID: 36339718]
  71. Clin Epigenetics. 2021 Jan 22;13(1):15 [PMID: 33482905]
  72. Genome Med. 2020 Feb 26;12(1):21 [PMID: 32102694]
  73. Nat Rev Cancer. 2003 May;3(5):330-8 [PMID: 12724731]
  74. PLoS Biol. 2004 Apr;2(4):E108 [PMID: 15094809]
  75. BMC Bioinformatics. 2013 Jan 16;14:7 [PMID: 23323831]
  76. J Clin Lab Anal. 2022 Nov;36(11):e24722 [PMID: 36181275]
  77. Ann Oncol. 2013 Oct;24(10):2694-2698 [PMID: 23942774]
  78. Cell Physiol Biochem. 2019;52(6):1553-1568 [PMID: 31135123]
  79. Cell Mol Immunol. 2018 May;15(5):447-457 [PMID: 29375124]
  80. CA Cancer J Clin. 2023 Jan;73(1):17-48 [PMID: 36633525]
  81. Front Immunol. 2022 Jul 06;13:922195 [PMID: 35935989]
  82. Cell. 2017 Dec 14;171(7):1611-1624.e24 [PMID: 29198524]
  83. Clin Transl Immunology. 2020 Jun 12;9(6):e1142 [PMID: 32547744]
  84. Nat Rev Cancer. 2012 Mar 22;12(4):252-64 [PMID: 22437870]
  85. Cancer Sci. 2013 Nov;104(11):1532-8 [PMID: 23889773]
  86. Genome. 2021 Apr;64(4):416-425 [PMID: 33091314]
  87. Expert Rev Anticancer Ther. 2011 Sep;11(9):1321-5 [PMID: 21929305]
  88. Oncotarget. 2016 Nov 8;7(45):74362-74379 [PMID: 27556186]
  89. Nat Rev Cancer. 2023 Mar;23(3):173-188 [PMID: 36456755]
  90. Int J Biol Macromol. 2024 Sep 20;280(Pt 3):135834 [PMID: 39307490]
  91. Genome Biol. 2017 Nov 15;18(1):220 [PMID: 29141660]
  92. J Oncol. 2022 Feb 18;2022:8402568 [PMID: 35222645]
  93. Oncol Rep. 2002 Nov-Dec;9(6):1363-7 [PMID: 12375049]
  94. Front Genet. 2022 Apr 08;13:788580 [PMID: 35464860]
  95. BMC Oral Health. 2023 Nov 14;23(1):864 [PMID: 37964257]
  96. Cancers (Basel). 2020 Sep 21;12(9): [PMID: 32967162]
  97. Brief Bioinform. 2020 Dec 1;21(6):2011-2030 [PMID: 31792509]
  98. Immunity. 2015 Feb 17;42(2):344-355 [PMID: 25680274]
  99. Eur J Pharmacol. 2014 Oct 5;740:364-78 [PMID: 25058905]
  100. Sci Rep. 2022 Nov 27;12(1):20404 [PMID: 36437265]
  101. Bioinformatics. 2021 Apr 1;36(22-23):5539-5541 [PMID: 33315104]

MeSH Term

Humans
Squamous Cell Carcinoma of Head and Neck
Machine Learning
Prognosis
Head and Neck Neoplasms
Biomarkers, Tumor
Algorithms
Multiomics

Chemicals

Biomarkers, Tumor

Word Cloud

Created with Highcharts 10.0.0HNSCCpatientscellmolecularmodelsurvivaltherapeuticmulti-omicssubtypesmachineprognosticsignatureimmuneImmunotherapynecksquamouscarcinomapersonalizedtreatmentstrategiesTCGAalgorithmstwoCS1infiltrationlow-riskcellsTdatalearningBACKGROUND:introducednewbreakthroughsimprovingheadyetdrugresistanceremainscriticalchallengeDevelopingbasedheterogeneityessentialenhanceefficacyprognosisMETHODS:integratedfourdatasetsTCGA-HNSCCGSE27020GSE41613GSE65858GEOdatabasesUsing10consensusclusteringviaMOVICSpackageidentifiedCS2validatedstabilitylearning-drivenconstructedcombining101ultimatelyselecting30prognosis-relatedgenesPRGsElasticNetlinkedfunctionalpathwayssensitivityRESULTS:exhibitedsuperioroutcomesMETA-HNSCCcohortsPRG-basedstratifiedlow-high-riskgroupsgroupshowingprolongedenhancedBmonocytesactivatedfunctionscytolyticactivityco-stimulationHigh-risksensitiveradiotherapychemotherapyegCisplatin5-FluorouracilrespondedbetterimmunotherapytargetedtherapiesCONCLUSION:studydelineatesestablishesrobustusingfindingsprovideframeworkselectionofferingclinicalinsightsoptimizeMultiplelearning-basedintegrationsidentifyconstructHeadMachineMulti-omicsanalysesPrognostic

Similar Articles

Cited By