The neural substrate of navigation using hydrostatic cues in goldfish.

Shachar Givon, Renana Altsuler-Nagar, Ronen Segev
Author Information
  1. Shachar Givon: Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
  2. Renana Altsuler-Nagar: Department of Biomdeical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
  3. Ronen Segev: Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. ORCID

Abstract

Hydrostatic pressure is a global sensory cue exploited by fish to navigate in the vertical dimension. Unlike other navigational cues in the horizontal plane that usually require learning and memory to determine location, hydrostatic pressure signals the absolute position along the vertical axis. Recently, it was shown that fish can use hydrostatic signals to navigate. It remains unclear, however, which brain regions are involved in processing this signal. Here, we tested whether the dorsomedial and lateral parts of the pallium, two regions that were found to be critical in horizontal navigation, are also critical for hydrostatic cue detection in goldfish. The results show that lesions to both these regions cause fish performance to deteriorate to chance values, indicating that both regions play an important role in processing hydrostatic pressure cues. These findings thus contribute to the rapidly growing body of knowledge on teleost navigation in space.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.7618800

References

  1. Neuroreport. 2004 Dec 22;15(18):2695-9 [PMID: 15597037]
  2. Front Behav Neurosci. 2016 Mar 08;10:40 [PMID: 27014002]
  3. Brain Behav Evol. 2024;99(4):230-247 [PMID: 38952102]
  4. Behav Brain Res. 2022 Feb 15;419:113711 [PMID: 34896210]
  5. Proc Biol Sci. 2022 Oct 12;289(1984):20221220 [PMID: 36476009]
  6. Brain Res. 2011 Mar 24;1381:95-105 [PMID: 21219890]
  7. Brain Res Bull. 2002 Feb-Mar 1;57(3-4):499-503 [PMID: 11923018]
  8. Behav Brain Res. 1996 Sep;79(1-2):193-200 [PMID: 8883830]
  9. Zebrafish. 2006;3(2):157-71 [PMID: 18248258]
  10. Behav Brain Res. 2010 Jul 11;210(2):191-201 [PMID: 20178818]
  11. J Neurosci Methods. 2017 Feb 15;278:76-86 [PMID: 28069391]
  12. J Comp Neurol. 2000 Aug 28;424(3):409-38 [PMID: 10906711]
  13. Physiol Rev. 1966 Apr;46(2):299-322 [PMID: 5325971]
  14. J Exp Biol. 1996;199(Pt 1):83-91 [PMID: 9317381]
  15. Acta Neurobiol Exp (Wars). 2008;68(4):519-25 [PMID: 19112476]
  16. J Comp Neurol. 2006 Feb 20;494(6):903-43 [PMID: 16385483]
  17. J Vis Exp. 2019 Nov 26;(153): [PMID: 31840665]
  18. Behav Brain Res. 2006 Sep 25;172(2):187-94 [PMID: 16797738]
  19. J R Soc Interface. 2010 Sep 6;7(50):1379-82 [PMID: 20190038]
  20. Front Neural Circuits. 2022 Jul 05;16:895381 [PMID: 35874430]
  21. Sci Adv. 2023 Nov 3;9(44):eadh7693 [PMID: 37910612]
  22. Sci Rep. 2020 Sep 8;10(1):14762 [PMID: 32901058]
  23. Brain Res Bull. 2023 Oct 28;:110802 [PMID: 39492553]
  24. Commun Biol. 2021 Oct 21;4(1):1208 [PMID: 34675348]
  25. PLoS Biol. 2023 Apr 25;21(4):e3001747 [PMID: 37097992]
  26. J Neurosci. 2002 Apr 1;22(7):2894-903 [PMID: 11923454]

Word Cloud

Created with Highcharts 10.0.0hydrostaticregionsnavigationpressurefishcuescuenavigateverticalhorizontalsignalsprocessingcriticalgoldfishteleostHydrostaticglobalsensoryexploiteddimensionUnlikenavigationalplaneusuallyrequirelearningmemorydeterminelocationabsolutepositionalongaxisRecentlyshowncanuseremainsunclearhoweverbraininvolvedsignaltestedwhetherdorsomediallateralpartspalliumtwofoundalsodetectionresultsshowlesionscauseperformancedeterioratechancevaluesindicatingplayimportantrolefindingsthuscontributerapidlygrowingbodyknowledgespaceneuralsubstrateusingcognitiondepthsensingspatialtelencephalon

Similar Articles

Cited By