Application of Generative Artificial Intelligence in Dyslipidemia Care.

Jihyun Ahn, Bokyoung Kim
Author Information
  1. Jihyun Ahn: Department of Internal Medicine, Korea Medical Institute, Seoul, Korea. ORCID
  2. Bokyoung Kim: College of Nursing, Research Institute of Nursing Innovation, Kyungpook National University, Daegu, Korea. ORCID

Abstract

Dyslipidemia dramatically increases the risk of cardiovascular diseases, necessitating appropriate treatment techniques. Generative AI (GenAI), an advanced AI technology that can generate diverse content by learning from vast datasets, provides promising new opportunities to address this challenge. GenAI-powered frequently asked questions systems and chatbots offer continuous, personalized support by addressing lifestyle modifications and medication adherence, which is crucial for patients with dyslipidemia. These tools also help to promote health literacy by making information more accessible and reliable. GenAI helps healthcare providers construct clinical case scenarios, training materials, and evaluation tools, which supports professional development and evidence-based practice. Multimodal GenAI technology analyzes food images and nutritional content to deliver personalized dietary recommendations tailored to each patient's condition, improving long-term nutritional management for those with dyslipidemia. Moreover, using GenAI for image generation enhances the visual quality of educational materials for both patients and professionals, allowing healthcare providers to create real-time, customized visual aids. To apply successfully, healthcare providers must develop GenAI-related abilities, such as prompt engineering and critical evaluation of GenAI-generated data.

Keywords

References

  1. JAMA Netw Open. 2024 Mar 4;7(3):e242609 [PMID: 38488790]
  2. Lancet Digit Health. 2024 Nov;6(11):e848-e856 [PMID: 39294061]
  3. Health Serv Res Manag Epidemiol. 2024 Mar 5;11:23333928241234863 [PMID: 38449840]
  4. Semin Nucl Med. 2024 Jun 7;: [PMID: 38851934]
  5. Nurs Open. 2024 Jan;11(1): [PMID: 38268252]
  6. J Gen Intern Med. 2019 Aug;34(8):1379-1380 [PMID: 31011959]
  7. ANZ J Surg. 2024 Mar;94(3):287-294 [PMID: 38087912]
  8. Korean J Intern Med. 2019 Jul;34(4):723-771 [PMID: 31272142]
  9. Front Public Health. 2023 Nov 07;11:1273253 [PMID: 38026291]
  10. J Adv Nurs. 2024 Feb 17;: [PMID: 38366690]
  11. J Adv Med Educ Prof. 2023 Jul;11(3):133-140 [PMID: 37469385]
  12. PLOS Digit Health. 2023 Feb 9;2(2):e0000198 [PMID: 36812645]
  13. Evid Based Complement Alternat Med. 2022 Oct 15;2022:4023123 [PMID: 36285157]
  14. Cureus. 2024 May 9;16(5):e59954 [PMID: 38854327]
  15. Patient Educ Couns. 2021 May;104(5):998-1017 [PMID: 33339657]
  16. Anatol J Cardiol. 2024 Jan 7;: [PMID: 38168009]
  17. Nurse Educ. 2023 May-Jun 01;48(3):124 [PMID: 36857593]
  18. Anat Sci Educ. 2024 Jul-Aug;17(5):979-983 [PMID: 37694692]
  19. Patient Educ Couns. 2020 Oct;103(10):1935-1960 [PMID: 32466864]
  20. Nat Med. 2024 Sep;30(9):2613-2622 [PMID: 38965432]
  21. JAMA Intern Med. 2023 Jun 1;183(6):589-596 [PMID: 37115527]
  22. J Lipid Atheroscler. 2024 May;13(2):111-121 [PMID: 38826186]
  23. Nurse Educ Pract. 2024 Aug;79:104079 [PMID: 39053152]
  24. JAMA Netw Open. 2024 Jul 1;7(7):e2422399 [PMID: 39012633]
  25. Front Artif Intell. 2023 Aug 29;6:1227091 [PMID: 37705603]
  26. BMC Med Educ. 2023 Sep 22;23(1):689 [PMID: 37740191]
  27. Comput Med Imaging Graph. 2023 Dec;110:102308 [PMID: 37918328]
  28. J Lipid Atheroscler. 2023 Sep;12(3):307-314 [PMID: 37800113]
  29. Radiol Artif Intell. 2022 Jul 27;4(5):e210315 [PMID: 36204533]
  30. J Nurs Manag. 2022 Nov;30(8):3654-3674 [PMID: 34272911]
  31. PNAS Nexus. 2024 Jun 11;3(6):pgae191 [PMID: 38864006]
  32. Cureus. 2024 May 8;16(5):e59898 [PMID: 38721479]
  33. J Nurs Educ. 2024 Jul 29;:1-2 [PMID: 39073762]
  34. Clin Orthop Relat Res. 2023 Nov 1;481(11):2260-2267 [PMID: 37116006]
  35. JAMA. 2023 Mar 14;329(10):842-844 [PMID: 36735264]
  36. JMIR Med Inform. 2024 Mar 20;12:e52073 [PMID: 38506918]
  37. Lancet Digit Health. 2020 Mar;2(3):e138-e148 [PMID: 33334578]
  38. Cureus. 2023 Dec 31;15(12):e51395 [PMID: 38292957]
  39. J Lipid Atheroscler. 2023 Sep;12(3):237-251 [PMID: 37800108]
  40. Diagnostics (Basel). 2024 Jun 24;14(13): [PMID: 39001228]
  41. JMIR Med Educ. 2023 Jun 1;9:e48291 [PMID: 37261894]
  42. JAMA Intern Med. 2024 May 1;184(5):557-562 [PMID: 38526472]
  43. JMIR Form Res. 2023 May 16;7:e46659 [PMID: 37191989]
  44. J Med Internet Res. 2023 Feb 24;25:e40789 [PMID: 36826990]
  45. IEEE J Biomed Health Inform. 2024 Jun 20;PP: [PMID: 38900623]
  46. JAMA Intern Med. 2023 Sep 1;183(9):1026-1027 [PMID: 37459091]
  47. Sensors (Basel). 2024 Aug 04;24(15): [PMID: 39124092]
  48. Medeni Med J. 2024 Mar 21;39(1):1-7 [PMID: 38511678]
  49. Lipids Health Dis. 2020 Jul 28;19(1):176 [PMID: 32723339]
  50. J Med Internet Res. 2024 Jul 23;26:e56930 [PMID: 39042446]
  51. BJR Open. 2024 Jul 17;6(1):tzae018 [PMID: 39086557]
  52. J Perianesth Nurs. 2023 Jun;38(3):519-522 [PMID: 37086240]
  53. EBioMedicine. 2024 Apr;102:105075 [PMID: 38565004]
  54. Med Teach. 2024 May;46(5):657-664 [PMID: 37862566]

Word Cloud

Created with Highcharts 10.0.0GenAIDyslipidemiaGenerativehealthcareprovidersAItechnologycontentpersonalizedpatientsdyslipidemiatoolsmaterialsevaluationnutritionalmanagementvisualPatientdramaticallyincreasesriskcardiovasculardiseasesnecessitatingappropriatetreatmenttechniquesadvancedcangeneratediverselearningvastdatasetsprovidespromisingnewopportunitiesaddresschallengeGenAI-poweredfrequentlyaskedquestionssystemschatbotsoffercontinuoussupportaddressinglifestylemodificationsmedicationadherencecrucialalsohelppromotehealthliteracymakinginformationaccessiblereliablehelpsconstructclinicalcasescenariostrainingsupportsprofessionaldevelopmentevidence-basedpracticeMultimodalanalyzesfoodimagesdeliverdietaryrecommendationstailoredpatient'sconditionimprovinglong-termMoreoverusingimagegenerationenhancesqualityeducationalprofessionalsallowingcreatereal-timecustomizedaidsapplysuccessfullymustdevelopGenAI-relatedabilitiespromptengineeringcriticalGenAI-generateddataApplicationArtificialIntelligenceCareEducationmedicalcontinuingartificialintelligencecareeducationtopic

Similar Articles

Cited By