Increasing the concentration of plasma molecules improves the biological activity of platelet-rich plasma for tissue regeneration.

Mikel Sánchez, Jon Mercader Ruiz, Daniel Marijuán Pinel, Pello Sánchez, Nicolás Fiz, Jorge Guadilla, Juan Azofra, Maider Beitia, Diego Delgado
Author Information
  1. Mikel Sánchez: Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain. mikel.sanchez@ucatrauma.com.
  2. Jon Mercader Ruiz: Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain.
  3. Daniel Marijuán Pinel: Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain.
  4. Pello Sánchez: Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain.
  5. Nicolás Fiz: Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain.
  6. Jorge Guadilla: Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain.
  7. Juan Azofra: Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain.
  8. Maider Beitia: Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain.
  9. Diego Delgado: Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain.

Abstract

Platelet-rich plasma (PRP) has emerged as a promising therapy in a variety of medical fields. However, it is crucial to go beyond simple platelet concentration and examine the complex molecular composition both inside and outside platelets. The present work studies the effectiveness of a novel type of PRP named 'balanced protein-concentrate plasma' (BPCP). Different growth factor (GF) levels were measured using Enzyme Linked Immunosorbent Assay (ELISA), and in addition to the increase in intra-platelet GFs found in standard PRP (sPRP), BPCP also showed a higher concentration of plasmatic protein. Furthermore, extracellular vesicle (EV) concentration was significantly higher in BPCP. Cell proliferation was higher in cells incubated with lysates derived from BPCP compared to those cultured with sPRP. Regarding cell migration capacity, it was found that the process is platelet-dependent. Finally, the anti-inflammatory effect of BPCP was evaluated by inducing an inflammatory environment in M1-type macrophages. Cytokine levels were measured by ELISA following BPCP administration, showing a significant decrease in pro-inflammatory IL-1β, IL-6 and TNF-α. In summary, although further preclinical and clinical studies are needed in order to determine the therapeutic potential of BPCP, this PRP with unique characteristics demonstrates encouraging in vitro results that could potentially enhance tissue regeneration capacity.

Keywords

References

  1. Biomed Res Int. 2024 Aug 9;2024:6444120 [PMID: 39157212]
  2. Pharm Biol. 2022 Dec;60(1):1365-1373 [PMID: 35881053]
  3. J Orthop Res. 2023 Jan;41(1):241-248 [PMID: 35451533]
  4. PLoS One. 2024 Feb 21;19(2):e0297001 [PMID: 38381708]
  5. Int J Mol Sci. 2021 Sep 08;22(18): [PMID: 34575865]
  6. Int J Mol Sci. 2021 Jan 18;22(2): [PMID: 33477502]
  7. Cell Tissue Bank. 2022 Sep;23(3):459-472 [PMID: 34494222]
  8. Osteoarthritis Cartilage. 2021 Apr;29(4):471-479 [PMID: 33307179]
  9. J Cell Physiol. 2010 Nov;225(3):757-66 [PMID: 20568106]
  10. Biochem Biophys Rep. 2022 Nov 18;32:101383 [PMID: 36420419]
  11. J Cell Physiol. 1990 Oct;145(1):1-8 [PMID: 1698792]
  12. Arthritis Rheumatol. 2014 Jul;66(7):1843-53 [PMID: 24578232]
  13. Data Brief. 2021 Jan 21;35:106786 [PMID: 33553532]
  14. Front Immunol. 2021 Dec 14;12:803244 [PMID: 34970276]
  15. Mol Biol Cell. 2013 Jul;24(13):2088-97 [PMID: 23657814]
  16. Theranostics. 2017 Jan 1;7(1):81-96 [PMID: 28042318]
  17. Sci Rep. 2024 Sep 30;14(1):22601 [PMID: 39349715]
  18. Int J Mol Sci. 2023 Jan 12;24(2): [PMID: 36675025]
  19. PLoS One. 2013 Jun 28;8(6):e67303 [PMID: 23840657]
  20. Int J Mol Sci. 2021 Aug 10;22(16): [PMID: 34445286]
  21. Open Med (Wars). 2016 Aug 12;11(1):242-247 [PMID: 28352802]
  22. J Clin Med. 2023 Sep 13;12(18): [PMID: 37762883]
  23. Int J Mol Sci. 2023 Sep 07;24(18): [PMID: 37762114]
  24. Curr Res Neurobiol. 2022 Dec 16;4:100068 [PMID: 36589675]
  25. J Biochem Mol Toxicol. 2023 Jan;37(1):e23227 [PMID: 36177510]
  26. Int J Mol Sci. 2024 Jul 19;25(14): [PMID: 39063156]
  27. Int J Mol Sci. 2023 May 04;24(9): [PMID: 37175951]
  28. Transfusion. 2019 Nov;59(11):3492-3500 [PMID: 31568583]
  29. Exp Ther Med. 2024 Feb 21;27(4):156 [PMID: 38476902]
  30. Arch Biochem Biophys. 2007 Apr 1;460(1):100-6 [PMID: 17288987]
  31. J Cell Physiol. 2013 Aug;228(8):1665-75 [PMID: 23086799]
  32. PLoS One. 2017 May 1;12(5):e0175807 [PMID: 28459804]
  33. Nat Rev Cardiol. 2019 Mar;16(3):166-179 [PMID: 30429532]
  34. Nat Commun. 2023 May 22;14(1):2900 [PMID: 37217480]
  35. Am J Physiol Cell Physiol. 2010 Mar;298(3):C465-76 [PMID: 20007454]
  36. Int J Mol Sci. 2023 Mar 10;24(6): [PMID: 36982439]
  37. Clinics (Sao Paulo). 2019;74:e1132 [PMID: 31433042]
  38. Biomark Res. 2020 Aug 2;8:28 [PMID: 32774856]
  39. Plast Reconstr Surg. 2007 Mar;119(3):950-9 [PMID: 17312501]
  40. Hypertens Res. 2014 Jun;37(6):500-6 [PMID: 24621470]
  41. Int J Mol Sci. 2022 May 27;23(11): [PMID: 35682700]
  42. J Cell Mol Med. 2020 Sep;24(18):10792-10802 [PMID: 32803867]
  43. Oral Dis. 2012 Jul;18(5):494-500 [PMID: 22273115]
  44. Microbes Infect. 1999 Dec;1(15):1275-82 [PMID: 10611755]
  45. Eur Cell Mater. 2014 Sep 22;28:137-51; discussion 151 [PMID: 25241964]
  46. J Biomed Mater Res A. 2009 Jan;88(1):128-39 [PMID: 18260130]
  47. Cancer Biomark. 2021;30(4):407-415 [PMID: 33492283]
  48. Expert Opin Biol Ther. 2020 Dec;20(12):1447-1460 [PMID: 32692595]
  49. Biomolecules. 2024 Oct 18;14(10): [PMID: 39456261]
  50. Connect Tissue Res. 2008;49(3):293-7 [PMID: 18661363]
  51. Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7738-43 [PMID: 18509061]
  52. Arthritis Rheum. 1993 Jan;36(1):44-50 [PMID: 8424835]
  53. Arthroscopy. 2025 Mar;41(3):809-817.e2 [PMID: 38513880]
  54. Cell Prolif. 2009 Apr;42(2):162-70 [PMID: 19250293]
  55. Heliyon. 2024 Feb 22;10(5):e26800 [PMID: 38434401]
  56. Clin Hemorheol Microcirc. 2017;66(1):47-55 [PMID: 28269759]

MeSH Term

Platelet-Rich Plasma
Humans
Cell Proliferation
Regeneration
Cell Movement
Extracellular Vesicles
Cytokines
Blood Platelets
Intercellular Signaling Peptides and Proteins
Animals
Macrophages
Mice
Male

Chemicals

Cytokines
Intercellular Signaling Peptides and Proteins

Word Cloud

Created with Highcharts 10.0.0BPCPPRPconcentrationplasmahigherCellstudieslevelsmeasuredELISAfoundsPRPproliferationmigrationcapacityeffecttissueregenerationPlatelet-richemergedpromisingtherapyvarietymedicalfieldsHowevercrucialgobeyondsimpleplateletexaminecomplexmolecularcompositioninsideoutsideplateletspresentworkeffectivenessnoveltypenamed'balancedprotein-concentrateplasma'DifferentgrowthfactorGFusingEnzymeLinkedImmunosorbentAssayadditionincreaseintra-plateletGFsstandardalsoshowedplasmaticproteinFurthermoreextracellularvesicleEVsignificantlycellsincubatedlysatesderivedcomparedculturedRegardingcellprocessplatelet-dependentFinallyanti-inflammatoryevaluatedinducinginflammatoryenvironmentM1-typemacrophagesCytokinefollowingadministrationshowingsignificantdecreasepro-inflammatoryIL-1βIL-6TNF-αsummaryalthoughpreclinicalclinicalneededorderdeterminetherapeuticpotentialuniquecharacteristicsdemonstratesencouragingvitroresultspotentiallyenhanceIncreasingmoleculesimprovesbiologicalactivityplatelet-richAnti-inflammatoryBiomoleculesGrowthfactorsPlatelet-rich-plasma

Similar Articles

Cited By