Hijacking of the nervous system in cancer: mechanism and therapeutic targets.

Yu Zhang, Qili Liao, Xuyang Wen, Jiayan Fan, Tifei Yuan, Xuemei Tong, Renbing Jia, Peiwei Chai, Xianqun Fan
Author Information
  1. Yu Zhang: Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, People's Republic of China.
  2. Qili Liao: Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, People's Republic of China.
  3. Xuyang Wen: Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, People's Republic of China.
  4. Jiayan Fan: Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, People's Republic of China.
  5. Tifei Yuan: Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
  6. Xuemei Tong: Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
  7. Renbing Jia: Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, People's Republic of China. renbingjia@sjtu.edu.cn.
  8. Peiwei Chai: Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, People's Republic of China. chaipeiwei123@sjtu.edu.cn.
  9. Xianqun Fan: Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, People's Republic of China. fanxq@sjtu.edu.cn.

Abstract

The activity of neurons in the vicinity of tumors is linked to a spectrum of cellular mechanisms, including the facilitation of tumor cell proliferation, synapse formation, angiogenesis, and macrophage polarization. This review consolidates the current understanding of neuro-oncological regulation, underscoring the nuanced interplay between neurological and oncological processes (termed as Cancer-Neuroscience). First, we elucidated how the nervous system accelerates tumor growth, metastasis, and the tumor microenvironment both directly and indirectly through the action of signaling molecules. Importantly, neural activity is also implicated in modulating the efficacy of therapeutic interventions, including immunotherapy. On the contrary, the nervous system potentially has a suppressive effect on tumorigenesis, further underscoring a dual-edged role of neurons in cancer progression. Consequently, targeting specific signaling molecules within neuro-oncological regulatory pathways could potentially suppress tumor development. Future research is poised to explore the intricate mechanisms governing neuro-tumor interactions more deeply, while concurrently refining treatment strategies for tumors by targeting the crosstalk between cancer and neurons.

Keywords

References

  1. Cancer Lett. 2024 Jul 10;594:216986 [PMID: 38797233]
  2. Cell. 2022 Aug 4;185(16):2899-2917.e31 [PMID: 35914528]
  3. Nat Neurosci. 2017 Feb 23;20(3):353-364 [PMID: 28230844]
  4. Nature. 2024 Oct;634(8032):243-250 [PMID: 39198648]
  5. Nat Rev Dis Primers. 2024 May 9;10(1):33 [PMID: 38724526]
  6. Eur Respir Rev. 2024 Jun 26;33(172): [PMID: 38925790]
  7. Cancer Cell. 2024 Oct 14;42(10):1631-1636 [PMID: 39270645]
  8. Acta Pharm Sin B. 2024 Jun;14(6):2786-2789 [PMID: 38828158]
  9. Cell. 2023 Apr 13;186(8):1689-1707 [PMID: 37059069]
  10. Science. 2013 Jul 12;341(6142):1236361 [PMID: 23846904]
  11. Trends Cancer. 2023 Aug;9(8):636-649 [PMID: 37258398]
  12. Clin Cancer Res. 2024 Mar 15;30(6):1160-1174 [PMID: 37855702]
  13. Oncotarget. 2014 Feb 28;5(4):882-93 [PMID: 24658464]
  14. Mol Syst Biol. 2022 Aug;18(8):e10473 [PMID: 35996956]
  15. Oncogene. 2020 Jan;39(3):503-515 [PMID: 31527667]
  16. Nature. 2019 May;569(7758):672-678 [PMID: 31092925]
  17. Cell. 2020 Apr 16;181(2):219-222 [PMID: 32302564]
  18. Science. 2011 Oct 7;334(6052):98-101 [PMID: 21921156]
  19. Cancer Res. 2023 Dec 1;83(23):3868-3885 [PMID: 38037454]
  20. Nat Med. 2021 Dec;27(12):2246 [PMID: 34799731]
  21. Clin Cancer Res. 2011 May 15;17(10):3123-33 [PMID: 21421859]
  22. Drugs. 2017 Sep;77(13):1377-1387 [PMID: 28660479]
  23. Cell Mol Life Sci. 2016 May;73(9):1859-70 [PMID: 26883804]
  24. Lancet Oncol. 2022 Feb;23(2):e62-e74 [PMID: 35114133]
  25. Sci Transl Med. 2023 Apr 26;15(693):eadf1147 [PMID: 37099632]
  26. Trends Cancer. 2017 Feb;3(2):89-112 [PMID: 28718448]
  27. Elife. 2021 Sep 16;10: [PMID: 34528509]
  28. Commun Biol. 2021 Jan 4;4(1):22 [PMID: 33398073]
  29. Nature. 2019 Sep;573(7775):526-531 [PMID: 31534217]
  30. Oncogene. 2019 Jun;38(24):4685-4699 [PMID: 30796353]
  31. Nat Commun. 2024 Jul 19;15(1):5555 [PMID: 39030177]
  32. Cancer Discov. 2018 Nov;8(11):1458-1473 [PMID: 30185628]
  33. Biochim Biophys Acta Rev Cancer. 2020 Dec;1874(2):188406 [PMID: 32827578]
  34. Acta Neuropathol Commun. 2021 Nov 16;9(1):183 [PMID: 34784974]
  35. Int J Cancer. 2020 Dec 15;147(12):3281-3291 [PMID: 32510582]
  36. Nature. 2021 Jun;594(7862):277-282 [PMID: 34040258]
  37. Nature. 2023 Nov;623(7986):366-374 [PMID: 37914930]
  38. J Biol Chem. 2017 Aug 4;292(31):12842-12859 [PMID: 28634230]
  39. Trends Cancer. 2020 Dec;6(12):1059-1067 [PMID: 32807693]
  40. Nat Commun. 2021 Sep 30;12(1):5725 [PMID: 34593796]
  41. Lancet. 2001 Jun 2;357(9270):1777-89 [PMID: 11403834]
  42. J Exp Clin Cancer Res. 2022 Feb 2;41(1):48 [PMID: 35109895]
  43. Nat Rev Mater. 2024 Apr 22;9:298-300 [PMID: 39234424]
  44. Cancer Res. 2024 Mar 4;84(5):645-647 [PMID: 38437637]
  45. Nat Immunol. 2024 Feb;25(2):268-281 [PMID: 38195702]
  46. Cancer Metastasis Rev. 1989 Aug;8(2):98-101 [PMID: 2673568]
  47. Nature. 2022 Nov;611(7935):405-412 [PMID: 36323780]
  48. Pharmacol Rev. 2000 Dec;52(4):595-638 [PMID: 11121511]
  49. Pharmacol Ther. 2022 Nov;239:108199 [PMID: 35490859]
  50. Cancer Res. 2012 Feb 15;72(4):836-40 [PMID: 22287549]
  51. J Clin Invest. 2021 Jun 1;131(11): [PMID: 34060481]
  52. J Control Release. 2022 Nov;351:656-666 [PMID: 36183971]
  53. Cancer Discov. 2024 Apr 4;14(4):669-673 [PMID: 38571430]
  54. Annu Rev Pathol. 2024 Jan 24;19:181-201 [PMID: 37832944]
  55. Cell Regen. 2022 Mar 7;11(1):7 [PMID: 35254502]
  56. J Allergy Clin Immunol. 2024 Apr;153(4):894-903 [PMID: 37952833]
  57. Nat Commun. 2020 Apr 14;11(1):1821 [PMID: 32286326]
  58. Adv Sci (Weinh). 2023 Jul;10(21):e2300545 [PMID: 37147783]
  59. Nat Commun. 2016 Feb 04;7:10517 [PMID: 26841680]
  60. Jpn J Cancer Res. 1986 Nov;77(11):1134-41 [PMID: 3098723]
  61. Nature. 2024 Jun;630(8017):695-703 [PMID: 38692285]
  62. J Exp Clin Cancer Res. 2018 Jan 15;37(1):5 [PMID: 29334991]
  63. Circ Res. 2009 Feb 27;104(4):428-41 [PMID: 19246687]
  64. Nat Commun. 2024 May 27;15(1):4503 [PMID: 38802334]
  65. Cancer Discov. 2019 Jun;9(6):702-710 [PMID: 30944117]
  66. Cancer Commun (Lond). 2021 Aug;41(8):642-660 [PMID: 34264020]
  67. Science. 2017 Oct 20;358(6361):321-326 [PMID: 29051371]
  68. J Exp Clin Cancer Res. 2024 Oct 10;43(1):284 [PMID: 39385213]
  69. Cancer Discov. 2024 Nov 8;: [PMID: 39513738]
  70. Nature. 2012 Jul 19;487(7407):325-9 [PMID: 22763456]
  71. Semin Cell Dev Biol. 2011 Dec;22(9):1019-27 [PMID: 21978864]
  72. Cancer Cell. 2017 Mar 13;31(3):342-354 [PMID: 28292437]
  73. Nat Cell Biol. 2023 Oct;25(10):1506-1519 [PMID: 37783795]
  74. Cell. 2015 May 7;161(4):704-6 [PMID: 25957677]
  75. Nature. 2020 Feb;578(7793):166-171 [PMID: 31996845]
  76. Curr Biol. 2020 Aug 17;30(16):R921-R925 [PMID: 32810447]
  77. J Clin Invest. 2019 Dec 2;129(12):5537-5552 [PMID: 31566578]
  78. Nat Nanotechnol. 2024 Nov 4;: [PMID: 39496914]
  79. Cancer Immunol Immunother. 2023 Aug;72(8):2549-2556 [PMID: 37060364]
  80. Nature. 2019 Sep;573(7775):539-545 [PMID: 31534222]
  81. Front Immunol. 2024 Feb 05;15:1284629 [PMID: 38375479]
  82. Trends Cancer. 2023 Dec;9(12):995-1005 [PMID: 37704502]
  83. Lancet Neurol. 2024 Jul;23(7):740-748 [PMID: 38876751]
  84. PLoS Biol. 2012 Jul;10(7):e1001363 [PMID: 22815651]
  85. Cell. 2011 Aug 19;146(4):633-44 [PMID: 21854987]
  86. Adv Sci (Weinh). 2024 Dec;11(46):e2407967 [PMID: 39422674]
  87. Nature. 2024 Sep;633(8028):207-215 [PMID: 39112700]
  88. Cell. 2022 Jan 6;185(1):62-76 [PMID: 34963057]
  89. Oncogene. 2020 May;39(20):4014-4027 [PMID: 32205868]
  90. EBioMedicine. 2022 Sep;83:104239 [PMID: 36054938]
  91. Nature. 2017 Sep 28;549(7673):533-537 [PMID: 28959975]
  92. Annu Rev Neurosci. 2022 Jul 8;45:199-221 [PMID: 35259916]
  93. Cancer Discov. 2025 Jan 13;15(1):202-226 [PMID: 39137067]
  94. Neuro Oncol. 2012 Jul;14(7):890-901 [PMID: 22611032]
  95. Biomaterials. 2024 Sep;309:122603 [PMID: 38713972]
  96. Cell. 2015 May 7;161(4):803-16 [PMID: 25913192]
  97. Cell. 2021 Jan 21;184(2):441-459.e25 [PMID: 33333021]
  98. Cancer Cell. 2017 Jan 9;31(1):21-34 [PMID: 27989802]
  99. Biochim Biophys Acta Rev Cancer. 2022 Nov;1877(6):188828 [PMID: 36283598]
  100. Cell Metab. 2022 Dec 6;34(12):1999-2017.e10 [PMID: 36395769]
  101. Nat Commun. 2016 Feb 29;7:10798 [PMID: 26924072]
  102. Sci Adv. 2023 May 10;9(19):eade4443 [PMID: 37163587]
  103. Nat Rev Cancer. 2023 May;23(5):317-334 [PMID: 37041409]
  104. Nature. 2023 Oct;622(7982):383-392 [PMID: 37731001]
  105. Cancer Microenviron. 2018 Jun;11(1):1-11 [PMID: 29502307]
  106. Cell Death Dis. 2024 Aug 30;15(8):636 [PMID: 39214988]
  107. Nat Rev Cancer. 2015 Sep;15(9):563-72 [PMID: 26299593]
  108. Biomed Pharmacother. 2023 Nov;167:115622 [PMID: 37783155]
  109. Signal Transduct Target Ther. 2024 Mar 8;9(1):63 [PMID: 38453934]
  110. Pharmacol Res. 2023 Jan;187:106555 [PMID: 36403721]
  111. Nat Rev Neurosci. 2023 Dec;24(12):733-746 [PMID: 37857838]
  112. Clin Cancer Res. 2023 Jul 5;29(13):2342-2344 [PMID: 37115511]
  113. Nat Rev Drug Discov. 2024 Oct;23(10):780-796 [PMID: 39242781]
  114. Sci Transl Med. 2014 Aug 20;6(250):250ra115 [PMID: 25143365]
  115. Annu Rev Pathol. 2023 Jan 24;18:493-514 [PMID: 36323005]

MeSH Term

Humans
Neoplasms
Animals
Tumor Microenvironment
Signal Transduction
Nervous System
Neurons
Molecular Targeted Therapy

Word Cloud

Created with Highcharts 10.0.0tumorsystemneuronsnervousactivitytumorsmechanismsincludingneuro-oncologicalunderscoringmicroenvironmentsignalingmoleculestherapeuticpotentiallycancertargetingvicinitylinkedspectrumcellularfacilitationcellproliferationsynapseformationangiogenesismacrophagepolarizationreviewconsolidatescurrentunderstandingregulationnuancedinterplayneurologicaloncologicalprocessestermedCancer-NeuroscienceFirstelucidatedacceleratesgrowthmetastasisdirectlyindirectlyactionImportantlyneuralalsoimplicatedmodulatingefficacyinterventionsimmunotherapycontrarysuppressiveeffecttumorigenesisdual-edgedroleprogressionConsequentlyspecificwithinregulatorypathwayssuppressdevelopmentFutureresearchpoisedexploreintricategoverningneuro-tumorinteractionsdeeplyconcurrentlyrefiningtreatmentstrategiescrosstalkHijackingcancer:mechanismtargetsCancerNervousNeurotransmittersNeurotrophicfactorsTherapeuticimplicationsTumor

Similar Articles

Cited By

No available data.