The differentiation state of small intestinal organoid models influences prediction of drug-induced toxicity.

Jessica A Klein, Julia D Heidmann, Tomomi Kiyota, Aaron Fullerton, Kimberly A Homan, Julia Y Co
Author Information
  1. Jessica A Klein: Complex In Vitro Systems, Translational Safety, Genentech Inc., South San Francisco, CA, United States.
  2. Julia D Heidmann: Investigative Toxicology, Translational Safety, Genentech Inc., South San Francisco, CA, United States.
  3. Tomomi Kiyota: Investigative Toxicology, Translational Safety, Genentech Inc., South San Francisco, CA, United States.
  4. Aaron Fullerton: Investigative Toxicology, Translational Safety, Genentech Inc., South San Francisco, CA, United States.
  5. Kimberly A Homan: Complex In Vitro Systems, Translational Safety, Genentech Inc., South San Francisco, CA, United States.
  6. Julia Y Co: Complex In Vitro Systems, Translational Safety, Genentech Inc., South San Francisco, CA, United States.

Abstract

Drug-induced intestinal toxicity (GIT) is a frequent dose-limiting adverse event that can impact patient compliance and treatment outcomes. there are proliferative and differentiated cell types critical to maintaining intestinal homeostasis. Traditional models using transformed cell lines do not capture this cellular complexity, and often fail to predict intestinal toxicity. Primary tissue-derived intestinal organoids, on the other hand, are a scalable Complex Model (CIVM) that recapitulates major intestinal cell lineages and function. Intestinal organoid toxicity assays have been shown to correlate with clinical incidence of drug-induced diarrhea, however existing studies do not consider how differentiation state of the organoids impacts assay readouts and predictivity. We employed distinct proliferative and differentiated organoid models of the small intestine to assess whether differentiation state alone can alter toxicity responses to small molecule compounds in cell viability assays. In doing so, we identified several examples of small molecules which elicit differential toxicity in proliferative and differentiated organoid models. This proof of concept highlights the need to consider which cell types are present in CIVMs, their differentiation state, and how this alters interpretation of toxicity assays.

Keywords

References

  1. Elife. 2020 Jan 14;9: [PMID: 31933478]
  2. J Pharm Sci. 2015 Sep;104(9):3120-7 [PMID: 25821198]
  3. Neurogastroenterol Motil. 2014 Jul;26(7):980-9 [PMID: 24813024]
  4. Cell Stem Cell. 2022 Sep 1;29(9):1333-1345.e6 [PMID: 36002022]
  5. Pharmacotherapy. 2018 Mar;38(3):341-348 [PMID: 29380488]
  6. Nature. 2020 Sep;585(7826):574-578 [PMID: 32939089]
  7. JAMA Intern Med. 2016 Dec 01;176(12):1826-1833 [PMID: 27723879]
  8. iScience. 2022 Jun 07;25(7):104542 [PMID: 35754737]
  9. J Int Med Res. 2002 May-Jun;30(3):301-8 [PMID: 12166347]
  10. N Engl J Med. 2008 Jul 24;359(4):378-90 [PMID: 18650514]
  11. Eur J Pharm Sci. 2023 Sep 1;188:106481 [PMID: 37244450]
  12. Arch Pathol Lab Med. 2016 Aug;140(8):748-58 [PMID: 27472233]
  13. Nature. 2016 Jan 14;529(7585):226-30 [PMID: 26762460]
  14. J Physiol. 2001 May 1;532(Pt 3):609-23 [PMID: 11313433]
  15. Nature. 2009 May 14;459(7244):262-5 [PMID: 19329995]
  16. Lab Chip. 2020 Apr 7;20(7):1177-1190 [PMID: 32129356]
  17. Sci Rep. 2015 Nov 19;5:16831 [PMID: 26582215]
  18. Gastroenterology. 1993 Jun;104(6):1832-47 [PMID: 8500743]
  19. Gastroenterology. 2011 Nov;141(5):1762-72 [PMID: 21889923]
  20. J Gastroenterol. 2015 Apr;50(4):378-86 [PMID: 25501289]
  21. Anal Chem. 2022 Jul 5;94(26):9345-9354 [PMID: 35736812]
  22. Handb Exp Pharmacol. 2015;229:291-321 [PMID: 26091645]
  23. Cell Mol Gastroenterol Hepatol. 2017 Mar 06;4(1):165-182.e7 [PMID: 29204504]
  24. Arch Toxicol. 2017 Aug;91(8):2849-2863 [PMID: 28612260]
  25. Nat Rev Mol Cell Biol. 2006 Jul;7(7):505-16 [PMID: 16829981]
  26. Cell Stem Cell. 2024 Aug 1;31(8):1175-1186.e7 [PMID: 38876106]
  27. Clin Pharmacol. 2014 Mar 19;6:51-9 [PMID: 24672263]
  28. Toxicol Sci. 2019 Mar 1;168(1):3-17 [PMID: 30364994]
  29. Sci Rep. 2018 Feb 13;8(1):2871 [PMID: 29440725]
  30. Am J Surg Pathol. 2008 Mar;32(3):473-7 [PMID: 18300801]
  31. Nat Methods. 2014 Jan;11(1):106-12 [PMID: 24292484]
  32. Cardiovasc Res. 2003 Apr 1;58(1):32-45 [PMID: 12667944]
  33. Toxicol Appl Pharmacol. 2020 May 1;394:114961 [PMID: 32209365]
  34. Am J Med. 2015 May;128(5):461-70 [PMID: 25554368]
  35. Ther Adv Med Oncol. 2010 Jan;2(1):51-63 [PMID: 21789126]
  36. Stem Cells. 2014 May;32(5):1083-91 [PMID: 24496776]
  37. Nat Commun. 2023 May 25;14(1):3025 [PMID: 37230989]
  38. Nature. 2024 Sep;633(8028):165-173 [PMID: 39143209]
  39. Cell Stem Cell. 2018 Dec 6;23(6):787-793.e6 [PMID: 30526881]
  40. Regul Toxicol Pharmacol. 2018 Jul;96:94-105 [PMID: 29730448]
  41. Ann Gastroenterol. 2012;25(2):106-118 [PMID: 24713845]
  42. Toxicol In Vitro. 2020 Oct;68:104928 [PMID: 32622998]
  43. Toxicol Appl Pharmacol. 2017 Nov 1;334:100-109 [PMID: 28893587]
  44. Commun Biol. 2022 Jan 27;5(1):99 [PMID: 35087225]
  45. J Biol Chem. 2016 Feb 19;291(8):3759-66 [PMID: 26677228]
  46. Nat Rev Drug Discov. 2014 Jun;13(6):419-31 [PMID: 24833294]
  47. Target Oncol. 2016 Dec;11(6):825-835 [PMID: 27873136]
  48. Science. 2022 Jan 07;375(6576):eaaw9021 [PMID: 34990240]
  49. Naunyn Schmiedebergs Arch Pharmacol. 2014 Jun;387(6):505-21 [PMID: 24643470]
  50. Biofabrication. 2024 Aug 27;16(4): [PMID: 39189069]
  51. Mol Cell Biol. 2012 Sep;32(18):3639-47 [PMID: 22778137]
  52. Curr Protoc Immunol. 2020 Sep;130(1):e106 [PMID: 32940424]
  53. Regul Toxicol Pharmacol. 2000 Aug;32(1):56-67 [PMID: 11029269]
  54. J Mol Cell Biol. 2020 Aug 1;12(8):562-568 [PMID: 32667995]
  55. Adv Biol (Weinh). 2023 Jun;7(6):e2200334 [PMID: 36861332]
  56. Am J Physiol Gastrointest Liver Physiol. 2022 Apr 1;322(4):G405-G420 [PMID: 35170355]
  57. Physiol Genomics. 2021 Nov 1;53(11):486-508 [PMID: 34612061]
  58. Sci Rep. 2023 Jun 27;13(1):10412 [PMID: 37369732]
  59. Mol Ther Methods Clin Dev. 2021 May 19;22:263-278 [PMID: 34485610]

Word Cloud

Created with Highcharts 10.0.0toxicityintestinalcellsmallmodelsorganoiddifferentiationstateproliferativedifferentiatedorganoidsassayscantypestissue-deriveddrug-induceddiarrheaconsiderintestineDrug-inducedGITfrequentdose-limitingadverseeventimpactpatientcompliancetreatmentoutcomescriticalmaintaininghomeostasisTraditionalusingtransformedlinescapturecellularcomplexityoftenfailpredictPrimaryhandscalableComplexModelCIVMrecapitulatesmajorlineagesfunctionIntestinalshowncorrelateclinicalincidencehoweverexistingstudiesimpactsassayreadoutspredictivityemployeddistinctassesswhetheralonealterresponsesmoleculecompoundsviabilityidentifiedseveralexamplesmoleculeselicitdifferentialproofconcepthighlightsneedpresentCIVMsaltersinterpretationinfluencespredictiongastrointestinalstemcells

Similar Articles

Cited By

No available data.