Salt tolerance evaluation and key salt-tolerant traits at germination stage of upland cotton.

Mengjie An, Xinhui Huang, Yilei Long, Yin Wang, Yanping Tan, Zhen Qin, Xiantao Ai, Yan Wang
Author Information
  1. Mengjie An: Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, Xinjiang, China.
  2. Xinhui Huang: Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, Xinjiang, China.
  3. Yilei Long: Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, Xinjiang, China.
  4. Yin Wang: Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, Xinjiang, China.
  5. Yanping Tan: Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, Xinjiang, China.
  6. Zhen Qin: Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, Xinjiang, China.
  7. Xiantao Ai: College of Smart Agriculture (Research Institute), Xinjiang University, Urumqi, Xinjiang, China.
  8. Yan Wang: Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, Xinjiang, China.

Abstract

Cotton is an important cash crop with a certain salt tolerance, but its germination stage is very susceptible to the damage of salt stress, causing significant yield loss. However, few studies have evaluated the cotton salt tolerance and selected salt tolerance traits at germination stage. Therefore, in this study, 16 cotton samples with geographical representation were randomly selected from 308 cotton germplasms to determine the optimal 200 mmol��L NaCl in cotton germination experiments. On this basis, the salt tolerance of 308 upland cotton varieties and the growth, ion distribution and transport of highly salt-tolerant and non salt-tolerant cotton germplasms were analyzed. The results showed that the 308 germplasms were classified into five classes through cluster analysis, i.e, (1) highly salt-tolerant germplasms (HST, 49), (2) salt-tolerant germplasms (ST, 169), (3) moderately salt-tolerant class (MST,43), (4) lowly salt-tolerant germplasms (LST, 16), and (5) non-salt-tolerant germplasms (NST, 31). By calculating the salt tolerance index (STI) of various cotton germination and growth parameters and principal component analysis, combined with the correlation analysis and linear regression between mean membership function value (MFV) and STI, the key indexes of cotton germination and growth under salt stress, including total fresh weight, shoot fresh weight, and shoot length, were determined. In addition, three salt tolerance evaluation models constructed with different variables (6 variables in Model 1; 3 variables in Model 2; 1 variable in Model 3) found that the total fresh weight was the most reliable trait for the salt tolerance evaluation. In practical application, the variable selection for modelling could be adjusted based on the experimental workload. The comparison of the K, Na, and Ca contents between HST and NST found that the higher the salt tolerance of cotton germplasms, the lower the Na content in the root system. Besides, the ion ratios and ion selective transport coefficients (ST) was found to be significantly positively correlated with the salt tolerance of cotton. This study will provide a basis for evaluating and breeding salt-tolerant cotton germplasms.

Keywords

References

  1. Plants (Basel). 2023 Jul 27;12(15): [PMID: 37570942]
  2. Plants (Basel). 2023 Jun 08;12(12): [PMID: 37375879]
  3. Sci Rep. 2024 Jun 3;14(1):12705 [PMID: 38831025]
  4. Plant J. 2020 Mar;101(5):1135-1151 [PMID: 31642116]
  5. Int J Phytoremediation. 2023;25(1):47-65 [PMID: 35382667]
  6. Plant J. 2024 Jul;119(1):115-136 [PMID: 38573794]
  7. Front Plant Sci. 2019 Jan 09;9:1954 [PMID: 30687356]
  8. Front Plant Sci. 2021 Mar 11;12:622309 [PMID: 33777064]
  9. Plants (Basel). 2022 Mar 29;11(7): [PMID: 35406886]
  10. J Plant Physiol. 2023 Jan;280:153878 [PMID: 36493668]
  11. Front Plant Sci. 2022 Oct 07;13:907937 [PMID: 36275563]
  12. Plants (Basel). 2023 Jan 08;12(2): [PMID: 36679008]
  13. Int J Mol Sci. 2023 Aug 16;24(16): [PMID: 37629034]
  14. Ann Bot. 2015 Feb;115(3):481-94 [PMID: 25471095]
  15. Plant Physiol Biochem. 2017 Sep;118:519-528 [PMID: 28772255]
  16. Plants (Basel). 2023 Dec 26;13(1): [PMID: 38202390]
  17. Sci Rep. 2024 May 23;14(1):11809 [PMID: 38782928]
  18. J Exp Bot. 2014 Mar;65(5):1241-57 [PMID: 24368505]
  19. Plants (Basel). 2023 Dec 28;13(1): [PMID: 38202405]
  20. Curr Biol. 2017 Sep 11;27(17):R874-R878 [PMID: 28898656]
  21. Heliyon. 2024 Aug 06;10(16):e35868 [PMID: 39220906]
  22. Sci Rep. 2020 Jun 30;10(1):10626 [PMID: 32606296]
  23. Plant Genome. 2021 Nov;14(3):e20157 [PMID: 34595846]
  24. Sci Rep. 2016 Oct 04;6:34548 [PMID: 27698468]
  25. Plant Signal Behav. 2011 Jun;6(6):861-3 [PMID: 21849817]
  26. Ann Bot. 2003 Apr;91(5):503-27 [PMID: 12646496]
  27. Front Plant Sci. 2021 Jul 09;12:619926 [PMID: 34305956]
  28. Physiol Plant. 2021 Dec;173(4):2207-2215 [PMID: 34549444]
  29. Antioxidants (Basel). 2022 Oct 10;11(10): [PMID: 36290728]
  30. Am J Bot. 1998 Jan;85(1):10 [PMID: 21684874]
  31. Front Plant Sci. 2022 May 03;13:860111 [PMID: 35592567]
  32. Physiol Mol Biol Plants. 2019 Jul;25(4):807-820 [PMID: 31402811]
  33. Front Plant Sci. 2019 Apr 26;10:530 [PMID: 31105727]
  34. Plant Physiol Biochem. 2013 Feb;63:49-60 [PMID: 23232247]
  35. J Integr Plant Biol. 2024 Mar;66(3):303-329 [PMID: 38108117]
  36. Heliyon. 2024 Jul 04;10(13):e34152 [PMID: 39071552]
  37. Plant Sci. 2019 Apr;281:72-81 [PMID: 30824063]
  38. Plant Physiol Biochem. 2021 May;162:506-516 [PMID: 33773227]
  39. PeerJ. 2024 Jan 29;12:e16838 [PMID: 38304185]
  40. Nat Rev Genet. 2022 Feb;23(2):104-119 [PMID: 34561623]
  41. Plants (Basel). 2022 Feb 28;11(5): [PMID: 35270125]
  42. Plant Physiol Biochem. 2023 Aug;201:107858 [PMID: 37390694]
  43. Physiol Plant. 2024 Mar-Apr;176(2):e14239 [PMID: 38439514]
  44. Plants (Basel). 2022 Dec 13;11(24): [PMID: 36559602]
  45. PLoS One. 2019 Dec 23;14(12):e0226776 [PMID: 31869397]
  46. Sci Total Environ. 2023 Dec 15;904:166978 [PMID: 37704141]
  47. J Exp Bot. 2023 Aug 17;74(15):4308-4323 [PMID: 37220077]
  48. Plant Cell Physiol. 2016 Jun;57(6):1189-209 [PMID: 27057003]
  49. Plant Biol (Stuttg). 2019 Jan;21 Suppl 1:31-38 [PMID: 30059606]
  50. BMC Plant Biol. 2018 Jun 20;18(1):128 [PMID: 29925319]
  51. Front Plant Sci. 2021 May 28;12:636536 [PMID: 34122466]

Word Cloud

Created with Highcharts 10.0.0cottonsalttolerancegermplasmssalt-tolerantgerminationionevaluationstage308growthanalysis13freshweightvariablesModelfoundcropstressselectedtraitsstudy16basisuplandtransporthighlyHST2STNSTSTImembershipfunctionkeytotalshootvariableNacontentCottonimportantcashcertainsusceptibledamagecausingsignificantyieldlossHoweverstudiesevaluatedThereforesamplesgeographicalrepresentationrandomlydetermineoptimal200mmol��LNaClexperimentsvarietiesdistributionnonanalyzedresultsshowedclassifiedfiveclassesclusterie49169moderatelyclassMST434lowlyLST5non-salt-tolerant31calculatingindexvariousparametersprincipalcomponentcombinedcorrelationlinearregressionmeanvalueMFVindexesincludinglengthdeterminedadditionthreemodelsconstructeddifferent6reliabletraitpracticalapplicationselectionmodellingadjustedbasedexperimentalworkloadcomparisonKCacontentshigherlowerrootsystemBesidesratiosselectivecoefficientssignificantlypositivelycorrelatedwillprovideevaluatingbreedingSaltvarietymodelsalinization

Similar Articles

Cited By