Effects of freeze-thawing, blanching, and ultrasound pretreatments on drying efficiency and quality of quince peels.

Pei Wang, Wenping Lv, Hongxin Wang
Author Information
  1. Pei Wang: School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, People's Republic of China. ORCID
  2. Wenping Lv: School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, People's Republic of China. ORCID
  3. Hongxin Wang: School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, People's Republic of China. ORCID

Abstract

This study investigated the effects of freeze-thawing (FT), blanching (BL), and ultrasound (US) pretreatments on the drying characteristics and quality of quince peels before hot air drying (HAD) at 60°C. All three pretreatments could decrease the moisture ratio (MR) at any drying time point and increase the effective moisture diffusivity (D). The maximum drying rate (DR) of the peels pretreated with BL and US was 1.4 times that of unpretreated peels. The MR-t curves of the peels were highly fitted to the Midilli model. The drying time to reach equilibrium dry basis moisture content for peels pretreated with FT, BL, and US was reduced by 33.33%, 58.33%, and 66.67%, respectively, compared to 4 h for unpretreated peels. The color of US pretreatment peels was closest to that of fresh peels. The total phenolics content and total flavonoids content in the peels were in the order of US > unpretreated > BL > FT. Notably, the rutin content of US pretreatment peels was 4.15 ± 0.10 mg/g DW, which was 15% higher than that of unpretreated peels. In summary, US is the most recommended pretreatment to improve the drying efficiency and quality of HAD quince peels.

Keywords

References

  1. Altay, K., Hayaloglu, A. A., & Dirim, S. N. (2019). Determination of the drying kinetics and energy efficiency of purple basil (Ocimum basilicum L.) leaves using different drying methods. Heat and Mass Transfer, 55, 2173–2184. https://doi.org/10.1007/s00231‐019‐02570‐9
  2. Al‐Zughbi, I., & Krayem, M. (2022). Quince fruit Cydonia oblonga Mill nutritional composition, antioxidative properties, health benefits and consumers preferences towards some industrial quince products: A review. Food Chemistry, 393, 133362. https://doi.org/10.1016/j.foodchem.2022.133362
  3. Ando, Y., Hagiwara, S., Nabetani, H., Sotome, I., Okunishi, T., Okadome, H., Orikasa, T., & Tagawa, A. (2019). Effects of prefreezing on the drying characteristics, structural formation and mechanical properties of microwave‐vacuum dried apple. Journal of Food Engineering, 244, 170–177. https://doi.org/10.1016/j.jfoodeng.2018.09.026
  4. Barani, Y. H., Zhang, M., & Wang, B. (2021). Effect of thermal and ultrasonic pretreatment on enzyme inactivation, color, phenolics and flavonoids contents of infrared freeze‐dried rose flower. Journal of Food Measurement and Characterization, 15, 995–1004. https://doi.org/10.1007/s11694‐020‐00701‐z
  5. Boateng, I. D., & Yang, X. M. (2021). Thermal and non‐thermal processing affect Maillard reaction products, flavor, and phytochemical profiles of Ginkgo biloba seed. Food Bioscience, 41, 101044. https://doi.org/10.1016/j.fbio.2021.101044
  6. Bombana, V. B., Fischer, B., Oro, C. E. D., Rigo, D., Polina, C. C., Denti, A. F., Goncalves, T. D., Steffens, C., Cansian, R. L., Backes, G. T., & Junges, A. (2023). Drying kinetics of guabiju pulp (Myrcianthes pungens): Mass transfer parameters, mathematical modeling and evaluation of bioactive compounds. Journal of Food Process Engineering, 46(1), e14205. https://doi.org/10.1111/jfpe.14205
  7. Chao, E. P., Li, J. W., & Fan, L. P. (2022). Enhancing drying efficiency and quality of seed‐used pumpkin using ultrasound, freeze‐thawing and blanching pretreatments. Food Chemistry, 384, 132496. https://doi.org/10.1016/j.foodchem.2022.132496
  8. Chasiotis, V. K., Tzempelikos, D. A., Filios, A. E., & Moustris, K. P. (2020). Artificial neural network modelling of moisture content evolution for convective drying of cylindrical quince slices. Computers and Electronics in Agriculture, 172, 105074. https://doi.org/10.1016/j.compag.2019.105074
  9. Che, Y. H., Yang, B., Mamat, A., Guo, C. M., Zhang, J., Ma, W. P., & Jiang, P. (2015). Analysis and evaluation of nutritional composition of big quince in Shache county of Xinjiang. Science and Technology of Food Industry, 36(24), 345–348. https://link.cnki.net/doi/10.13386/j.issn1002‐0306.2015.24.067
  10. Dashbaldan, S., Rogowska, A., Pączkowski, C., & Szakiel, A. (2021). Distribution of triterpenoids and steroids in developing Rugosa Rose (Rosarugosa Thunb.) accessory fruit. Molecules, 26(17), 5158. https://doi.org/10.3390/molecules26175158
  11. de Chaves, J. L. F., Dias, R. E. G., Barboza, T. T., Fitz, V. A., Godoy, C. A., Toci, A. T., Masson, M. L., & Reis, F. R. (2023). Drying, physical, nutritional and bioactive characteristics of apple peel flour subjected to blanching and ultrasound pretreatments. Plant Foods for Human Nutrition, 78, 704–709. https://doi.org/10.1007/s11130‐023‐01110‐5
  12. Deng, L. Z., Mujumdar, A. S., Zhang, Q., Yang, X. H., Wang, J., Zheng, Z. A., Gao, Z. J., & Xiao, H. W. (2017). Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes—A comprehensive review. Critical Reviews in Food Science and Nutrition, 59(9), 1408–1432. https://doi.org/10.1080/10408398.2017.1409192
  13. de Vilela Silva, E. T., de Queiroz, A. J. M., de Figueirêdo, R. M. F., Moura, H. V., de França Silva, A. P., dos Santos, F. S., Paiva, Y. F., Palma, C. F. C., Saraiva, M. M. T., & de Macedo Albuquerque Junior, N. (2024). Enhancing mangosteen peel drying: Impact of ethanol pre‐treatment, vacuum pulsing, and blaching on process efficiency and bioactive compound levels. LWT, 198, 115981. https://doi.org/10.1016/j.lwt.2024.115981
  14. Ergün, K., Çaliskan, G., & Dirim, S. N. (2016). Determination of the drying and rehydration kinetics of freeze dried kiwi (Actinidia deliciosa) slices. Heat and Mass Transfer, 52, 2697–2705. https://doi.org/10.1007/s00231‐016‐1773‐x
  15. Fotiou, D., Argyropoulos, K., Kolompourda, P., & Goula, A. M. (2023). Valorization of peach peels: Preservation with an optimized drying process based on ultrasounds pretreatment with ethanol. Biomass Conversion and Biorefinery, 13, 16345–16357. https://doi.org/10.1007/s13399‐023‐03753‐5
  16. Golawska, S., Lukasik, I., Chojnacki, A. A., & Chrzanowski, G. (2023). Flavonoids and phenolic acids content in cultivation and wild collection of European cranberry bush Viburnum opulus L. Molecules, 28(5), 2285. https://doi.org/10.3390/molecules28052285
  17. Grygorieva, O., Klymenko, S., Vergun, O., Mnahoncáková, E., Brindza, J., Terentjeva, M., & Ivanisová, E. (2020). Evaluation of the antioxidant activity and phenolic content of Chinese quince (Pseudocydonia sinensis Schneid.) fruit. Acta Scientiarum Polonorum Technologia Alimentaria, 19(1), 25–36. https://doi.org/10.17306/J.AFS.2020.0738
  18. Guo, X. J., Hao, Q. D., Qiao, X. G., Li, M., Qiu, Z. C., Zheng, Z. J., & Zhang, B. (2023). An evaluation of different pretreatment methods of hot‐air drying of garlic: Drying characteristics, energy consumption and quality properties. LWT, 180, 114685. https://doi.org/10.1016/j.lwt.2023.114685
  19. Hanan, E., Hasan, N., Zahiruddin, S., Ahmad, S., Sharma, V., & & Ahmad, F. J. (2023). Utilization of quince (Cydonia oblonga) peel and exploration of its metabolite profiling and cardioprotective potential against doxorubicin‐induced cardiotoxicity in wistar rats. ACS Omega, 8(43), 40036–40050. https://doi.org/10.1021/acsomega.3c00698
  20. Hawa, L. C., Ubaidillah, U., Mardiyani, S. A., Laily, A. N., Yosika, N. I. W., & Afifah, F. N. (2021). Drying kinetics of cabya (Piper retrofractum Vahl) fruit as affected by hot water blanching under indirect forced convection solar dryer. Solar Energy, 214, 588–598. https://doi.org/10.1016/j.solener.2020.12.004
  21. İzli, G., & Yildiz, G. (2021). Evaluation of high intensity ultrasound pre‐treatment effects on the physical properties and bioactive compounds of convective dried quince samples. International Journal of Fruit Science, 21(1), 645–656. https://doi.org/10.1080/15538362.2021.1918604
  22. Li, Y., Zhao, H., Xiang, K. X., Li, D. J., Liu, C. J., Wang, H. O., Pang, W. Q., Niu, L. Y., Yu, R., & Sun, X. Y. (2024). Factors affecting chemical and textural properties of dried tuber, fruit and vegetable. Journal of Food Engineering, 365, 111828. https://doi.org/10.1016/j.jfoodeng.2023.111828
  23. Lima, A. R. N., da Silva Junior, A. F., Pereira, M. T. L., Viera, V. B., de Oliveira, T. M. Q., & da Silva, W. P. (2022). Evaluation of two different diffusive models to describe the drying of passion fruit peels with and without blanching. Heat and Mass Transfer, 58, 669–682. https://doi.org/10.1007/s00231‐021‐03142‐6
  24. Liu, Y. Y., Wang, Y., Lv, W. Q., Li, D., & Wang, L. J. (2021). Freeze‐thaw and ultrasound pretreatment before microwave combined drying affects drying kinetics, cell structure and quality parameters of Platycodon grandiflorum. Industrial Crops and Products, 164, 113391. https://doi.org/10.1016/j.indcrop.2021.113391
  25. Llavata, B., Mello, R. E., Quiles, A., Correa, J. L. G., & Cárcel, J. A. (2024). Effect of freeze‐thaw and PEF pretreatments on the kinetics and microstructure of convective and ultrasound‐assisted drying of orange peel. npj Science of Food, 8, Article 56. https://doi.org/10.1038/s41538‐024‐00301‐x
  26. Man, X. L., Li, L., Fan, X. W., Zhang, H., Lan, H. P., Tang, Y. R., & Zhang, Y. C. (2024). Drying kinetics and mass transfer characteristics of walnut under hot air drying. Agriculture, 14(2), 182. https://doi.org/10.3390/agriculture14020182
  27. Miraei Ashtiani, S. H., & Martynenko, A. (2024). Toward intelligent food drying: Integrating artificial intelligence into drying systems. Drying Technology, 42(8), 1240–1269. https://doi.org/10.1080/07373937.2024.2356177
  28. Miraei Ashtiani, S. H., Rafiee, M., Mohebi Morad, M., Khojastehpour, M., Khani, M. R., Rohani, A., Shokri, B., & Martynenko, A. (2020). Impact of gliding arc plasma pretreatment on drying efficiency and physicochemical properties of grape. Innovative Food Science & Emerging Technologies, 63, 102381. https://doi.org/10.1016/j.ifset.2020.102381
  29. Miraei Ashtiani, S. H., Rafiee, M., Mohebi Morad, M., & Martynenko, A. (2022). Cold plasma pretreatment improves the quality and nutritional value of ultrasound‐assisted convective drying: The case of goldenberry. Drying Technology, 40(8), 1639–1657. https://doi.org/10.1080/07373937.2022.2050255
  30. Nagel, A., Neidhart, S., Kuebler (née Wulfkuehler), S., Elstner, P., Anders, T., Korhummel, S., Sulzer, T., Kienzle, S., Winkler, C., Qadri, S., Rentschler, C., Pholpipattanapong, N., Wuthisomboon, J., Endress, H. U., Sruamsiri, P., & Carle, R. (2017). Applicability of fruit blanching and intermittent microwave‐convective belt drying to industrial peel waste of different mango cultivars for the recovery of functional coproducts. Industrial Crops and Products, 109, 923–935. https://doi.org/10.1016/j.indcrop.2017.08.028
  31. Najman, K., Adrian, S., Hallmann, E., Sadowska, A., Buczak, K., Waszkiewicz‐Robak, B., & Szterk, A. (2023). Effect of various drying methods on physicochemical and bioactive properties of quince fruit (Cydonia oblonga Mill.). Agriculture, 13(2), 446. https://doi.org/10.3390/agriculture13020446
  32. Nowak, K. W., Zielinska, M., & Waszkielis, K. M. (2019). The effect of ultrasound and freezing/thawing treatment on the physical properties of blueberries. Food Science and Biotechnology, 28, 741–749. https://doi.org/10.1007/s10068‐018‐0528‐5
  33. Ramos, K. K., Lessio, B. C., Mecê, A. L. B., & Efraim, P. (2017). Mathematical modeling of uvaia byproduct drying and evaluation of quality parameters. Food Science and Biotechnology, 26, 643–651. https://doi.org/10.1007/s10068‐017‐0078‐2
  34. Rather, J. A., Yousuf, S., Ashraf, Q. S., Mir, S. A., Makroo, H. A., Majid, D., Barba, F. J., & Dar, B. N. (2023). Nutritional and bioactive composition, nutraceutical potential, food and packaging applications of Cydonia oblonga and its byproducts: A review. Journal of Food Composition and Analysis, 115, 105000. https://doi.org/10.1016/j.jfca.2022.105000
  35. Santos, N. C., Almeida, R. L. J., da Silva, G. M., Monteiro, S. S., & André, A. M. M. C. N. (2020). Effect of ultrasound pre‐treatment on the kinetics and thermodynamic properties of guava slices drying process. Innovative Food Science & Emerging Technologies, 66, 102507. https://doi.org/10.1016/j.ifset.2020.102507
  36. Santos, N. C., Almeida, R. L. J., Monteiro, S. S., de Andrade, E. W. V., dos Santos Silva, R., Albuquerque, J. C., de Figueiredo, D. V. P., Duarte, D. R., da Silva Santos Pinheiro, L., Martins, A. N. A., do Nascimento Silva, S., de Luna Dias, R. A., de Bittencourt Pasquali, M. A., & Rocha, A. P. T. (2024). Drying of avocado peels using carbonation‐ultrasonication as pretreatment: Energy consumption, antioxidant capacity and rheological properties. Chemical Engineering and Processing—Process Intensification, 205, 110004. https://doi.org/10.1016/j.cep.2024.110004
  37. Shi, Y., Chen, G. J., Chen, K. W., Chen, X. H., Hong, Q. Y., & Kan, J. Q. (2021). Assessment of fresh star anise (Illicium verum Hook.f.) drying methods for influencing drying characteristics, color, flavor, volatile oil and shikimic acid. Food Chemistry, 342, 128359. https://doi.org/10.1016/j.foodchem.2020.128359
  38. Tao, Y., Li, D. D., Siong Chai, W., Show, P. L., Yang, X., Manickam, S., Xie, G., & Han, Y. (2021). Comparison between airborne ultrasound and contact ultrasound to intensify air drying of blackberry: Heat and mass transfer simulation, energy consumption and quality evaluation. Ultrasonics Sonochemistry, 72, 105410. https://doi.org/10.1016/j.ultsonch.2020.105410
  39. Wang, H., Karim, M. A., Vidyarthi, S. K., Xie, L., Liu, Z. L., Gao, L., Zhang, J. S., & Xiao, H. W. (2021). Vacuum‐steam pulsed blanching (VSPB) softens texture and enhances drying rate of carrot by altering cellular structure, pectin polysaccharides and water state. Innovative Food Science & Emerging Technologies, 74, 102801. https://doi.org/10.1016/j.ifset.2021.102801
  40. Wang, P., Lv, W. P., & Wang, H. X. (2025). Effects of freeze‐hot air drying on physicochemical properties and anti‐tyrosinase activity of quince peels. Food Chemistry, 463, 141507. https://doi.org/10.1016/j.foodchem.2024.141507
  41. Yildiz, G. (2021). The effect of high intensity ultrasound pre‐treatment on the functional properties of microwave‐dried pears. Latin American Applied Research, 51(2). https://doi.org/10.52292/j.laar.2021.627
  42. Yildiz, G., & Barel, O. (2024). The effect of ultrasound pre‐treatment on the color, antioxidant capacity and total phenolic content of freeze‐dried banana slices. Latin American Applied Research, 54(3). https://doi.org/10.52292/j.laar.2024.3225
  43. Yildiz, G., & Izli, G. (2019). The effect of ultrasound pretreatment on quality attributes of freeze‐dried quince slices: Physical properties and bioactive compounds. Journal of Food Process Engineering, 42(5), e13223. https://doi.org/10.1111/jfpe.13223
  44. Zhang, B., Li, M., Qiao, Y. T., Gao, P., Li, L. Y., & Zheng, Z. J. (2020). Potential use of low‐field nuclear magnetic resonance to determine the drying characteristics and quality of Arctium lappa L. in hot‐blast air. LWT, 132, 109829. https://doi.org/10.1016/j.lwt.2020.109829
  45. Zhang, J. K., Zheng, X., Xiao, H. W., Li, Y. C., & Yang, T. Q. (2023). Effect of combined infrared hot air drying on yam slices: Drying kinetics, energy consumption, microstructure, and nutrient composition. Foods, 12(16), 3048. https://doi.org/10.3390/foods12163048
  46. Zhang, M., Ma, C., Yang, L. F., Dui, W. C., Fan, Q., Meng, X. F., & Wu, M. Y. (2018). Effect of different pretreatment methods on properties of the hot air drying powder of broccoli defective product. Science and Technology of Food Industry, 39(14), 12–17. https://link.cnki.net/doi/10.13386/j.issn1002‐0306.2018.14.003
  47. Zheng, P., Zhang, J., & Lu, S. M. (2014). Study on the variation of nutrient contents and sensory values in Satsuma mandarin during blanching process. Science & Technology of Food Industry, 35(3), 81–85. 88. https://link.cnki.net/doi/10.13386/j.issn1002‐0306.2014.03.043
  48. Zielinska, M., & Zielinska, D. (2019). Effects of freezing, convective and microwave‐vacuum drying on the content of bioactive compounds and color of cranberries. LWT, 104, 202–209. https://doi.org/10.1016/j.lwt.2019.01.041

Grants

  1. JUFSTR20180204/National First-class Discipline Program in Food Science and Technology

MeSH Term

Fruit
Phenols
Desiccation
Food Handling
Rosaceae
Flavonoids
Freeze Drying
Ultrasonics
Color
Hot Temperature
Water

Chemicals

Phenols
Flavonoids
Water

Word Cloud

Created with Highcharts 10.0.0peelsdryingUSquincecontentpretreatmentBLpretreatmentsqualitymoistureunpretreatedfreeze-thawingFTblanchingultrasoundcharacteristicsHADtimepretreated433%totalefficiencystudyinvestigatedeffectshotair60°CthreedecreaseratioMRpointincreaseeffectivediffusivityDmaximumrateDR1timesMR-tcurveshighlyfittedMidillimodelreachequilibriumdrybasisreduced33586667%respectivelycompared4 hcolorclosestfreshphenolicsflavonoidsorderUS > unpretreated > BL > FTNotablyrutin15 ± 010 mg/gDW15%highersummaryrecommendedimproveEffectsactivecompounds

Similar Articles

Cited By