Reliability of in vitro data for the mechanistic prediction of brain extracellular fluid pharmacokinetics of P-glycoprotein substrates in vivo; are we scaling correctly?

Daan W van Valkengoed, Makoto Hirasawa, Vivi Rottsch��fer, Elizabeth C M de Lange
Author Information
  1. Daan W van Valkengoed: Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands. ORCID
  2. Makoto Hirasawa: Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands. ORCID
  3. Vivi Rottsch��fer: Mathematical Institute, Leiden University, Leiden, The Netherlands. ORCID
  4. Elizabeth C M de Lange: Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands. ecmdelange@lacdr.leidenuniv.nl. ORCID

Abstract

Plasma pharmacokinetic (PK) profiles often do not resemble the PK within the central nervous system (CNS) because of blood-brain-border (BBB) processes, like active efflux by P-glycoprotein (P-gp). Methods to predict CNS-PK are therefore desired. Here we investigate whether in vitro apparent permeability (P) and corrected efflux ratio (ER) extracted from literature can be repurposed as input for the LeiCNS-PK3.4 physiologically-based PK model to confidently predict rat brain extracellular fluid (ECF) PK of P-gp substrates. Literature values of in vitro Caco-2, LLC-PK1-mdr1a/MDR1, and MDCKII-MDR1 cell line transport data were used to calculate P-gp efflux clearance (CL). Subsequently, CL was scaled from in vitro to in vivo through a relative expression factor (REF) based on P-gp expression differences. BrainECF PK was predicted well (within twofold error of the observed data) for 2 out of 4 P-gp substrates after short infusions and 3 out of 4 P-gp substrates after continuous infusions. Variability of in vitro parameters impacted both predicted rate and extent of drug distribution, reducing model applicability. Notably, use of transport data and in vitro P-gp expression obtained from a single study did not guarantee an accurate prediction; it often resulted in worse predictions than when using in vitro expression values reported by other labs. Overall, LeiCNS-PK3.4 shows promise in predicting brainECF PK, but this study highlights that the in vitro to in vivo translation is not yet robust. We conclude that more information is needed about context and drug dependency of in vitro data for robust brainECF PK predictions.

Keywords

References

  1. Cell Mol Neurobiol. 2010 Jan;30(1):63-70 [PMID: 19629677]
  2. Pharm Res. 2003 Aug;20(8):1200-9 [PMID: 12948018]
  3. Pharm Res. 2003 Aug;20(8):1210-24 [PMID: 12948019]
  4. Clin Pharmacol Ther. 2011 Feb;89(2):183-8 [PMID: 21191382]
  5. Mol Pharm. 2020 Jun 1;17(6):2006-2020 [PMID: 32310660]
  6. Pharm Res. 2010 Mar;27(3):442-6 [PMID: 20135207]
  7. Eur J Pharm Sci. 2018 Nov 1;124:61-70 [PMID: 30144528]
  8. Clin Pharmacol Ther. 2024 May;115(5):1044-1053 [PMID: 38124355]
  9. AAPS J. 2017 Sep;19(5):1317-1331 [PMID: 28664465]
  10. Biopharm Drug Dispos. 2023 Feb;44(1):60-70 [PMID: 36630933]
  11. PLoS Comput Biol. 2021 Mar 4;17(3):e1008786 [PMID: 33661919]
  12. Drug Metab Dispos. 2024 Jan 9;52(2):95-105 [PMID: 38071533]
  13. PLoS Comput Biol. 2019 Jun 13;15(6):e1007117 [PMID: 31194730]
  14. Pharm Res. 2017 Feb;34(2):333-351 [PMID: 27864744]
  15. Pharmacol Ther. 2022 Oct;238:108271 [PMID: 36002079]
  16. J Pharmacol Exp Ther. 1999 Nov;291(2):778-84 [PMID: 10525100]
  17. Curr Pharm Biotechnol. 2017;18(14):1151-1158 [PMID: 29521222]
  18. Drug Metab Dispos. 2020 Nov;48(11):1183-1190 [PMID: 32862147]
  19. Drug Metab Dispos. 2015 Feb;43(2):284-8 [PMID: 25488931]
  20. J Pharm Sci. 2008 Feb;97(2):712-25 [PMID: 17542022]
  21. Adv Drug Deliv Rev. 1999 Apr 5;36(2-3):179-194 [PMID: 10837715]
  22. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3473-8 [PMID: 10716719]
  23. Drug Metab Dispos. 2016 Mar;44(3):297-307 [PMID: 26631742]
  24. J Cell Physiol. 1990 Feb;142(2):247-54 [PMID: 2303524]
  25. Eur J Pharm Sci. 2018 Sep 15;122:134-143 [PMID: 29936088]
  26. Drug Metab Dispos. 2016 Mar;44(3):476-80 [PMID: 26842595]
  27. Drug Des Devel Ther. 2019 Oct 18;13:3591-3605 [PMID: 31695329]
  28. J Pharmacokinet Pharmacodyn. 2009 Dec;36(6):495-522 [PMID: 19847628]
  29. Clin Pharmacol Ther. 2021 Feb;109(2):494-506 [PMID: 32799335]
  30. Clin Cancer Res. 2017 Dec 15;23(24):7454-7466 [PMID: 28928160]
  31. Prog Neuropsychopharmacol Biol Psychiatry. 2007 May 9;31(4):878-86 [PMID: 17337319]
  32. Drug Metab Dispos. 2012 Mar;40(3):461-6 [PMID: 22112383]
  33. Fluids Barriers CNS. 2024 Jan 25;21(1):11 [PMID: 38273301]
  34. Transplant Proc. 2005 Jan-Feb;37(1):175-7 [PMID: 15808585]
  35. J Pharmacokinet Pharmacodyn. 2013 Jun;40(3):327-42 [PMID: 23539188]
  36. Toxicol Rep. 2020 Jan 14;7:149-154 [PMID: 31993333]
  37. Prog Neuropsychopharmacol Biol Psychiatry. 2012 Oct 1;39(1):156-62 [PMID: 22691713]
  38. Drug Metab Dispos. 2017 Dec;45(12):1282-1291 [PMID: 28916530]
  39. Pharm Res. 2007 Feb;24(2):265-76 [PMID: 17191095]
  40. Methods Mol Biol. 2021;2342:737-763 [PMID: 34272715]
  41. Mol Pharm. 2017 Oct 2;14(10):3436-3447 [PMID: 28880093]
  42. J Pharm Sci. 2008 Jan;97(1):553-65 [PMID: 17828734]
  43. ALTEX. 2022 Jul 22;40(2):237���247 [PMID: 35901496]
  44. J Med Chem. 2003 Apr 24;46(9):1716-25 [PMID: 12699389]
  45. Eur J Pharmacol. 2002 Apr 5;440(1):7-16 [PMID: 11959083]
  46. Drug Metab Pharmacokinet. 2016 Feb;31(1):57-66 [PMID: 26830080]
  47. Pharmaceutics. 2014 Mar 18;6(1):97-136 [PMID: 24647103]
  48. Drug Metab Pharmacokinet. 2014;29(5):419-26 [PMID: 24806821]
  49. Cytometry A. 2011 Nov;79(11):912-9 [PMID: 21905209]
  50. Arch Toxicol. 2021 Sep;95(9):3015-3029 [PMID: 34268580]
  51. Pharm Res. 2006 Jul;23(7):1460-72 [PMID: 16779700]
  52. Drug Metab Dispos. 2020 Feb;48(2):135-145 [PMID: 31771948]
  53. J Pharmacol Exp Ther. 2006 Mar;316(3):1282-90 [PMID: 16330496]
  54. Drug Metab Dispos. 2008 Oct;36(10):2005-13 [PMID: 18606742]
  55. Drug Metab Dispos. 2008 Feb;36(2):268-75 [PMID: 17962372]
  56. Pharm Res. 2022 Jul;39(7):1321-1341 [PMID: 35411506]
  57. Eur J Pharm Sci. 2018 Jan 15;112:168-179 [PMID: 29133240]
  58. Pharm Res. 2006 Sep;23(9):1991-2001 [PMID: 16951996]
  59. Pharmaceutics. 2021 Sep 03;13(9): [PMID: 34575476]
  60. J Pharm Sci. 2019 Jul;108(7):2476-2483 [PMID: 30794795]
  61. Spinal Cord. 2019 Mar;57(3):165-166 [PMID: 30723255]
  62. J Pharmacol Exp Ther. 2014 Sep;350(3):578-88 [PMID: 24947467]
  63. Biophys J. 2005 Jan;88(1):715-38 [PMID: 15501934]
  64. Biol Pharm Bull. 2006 Mar;29(3):522-6 [PMID: 16508158]
  65. Drug Metab Dispos. 2011 Dec;39(12):2440-9 [PMID: 21949244]
  66. AAPS J. 2022 Jan 13;24(1):28 [PMID: 35028763]
  67. Br J Pharmacol. 2007 Jul;151(5):701-12 [PMID: 17471182]
  68. Eur J Haematol. 2015 Aug;95(2):150-9 [PMID: 25323158]
  69. AAPS J. 2005 Oct 07;7(3):E532-43 [PMID: 16353931]
  70. J Am Soc Nephrol. 1998 Oct;9(10):1767-76 [PMID: 9773777]
  71. Pharm Res. 2009 Aug;26(8):1816-31 [PMID: 19421845]
  72. J Neurochem. 2001 Dec;79(5):959-69 [PMID: 11739607]
  73. J Pharm Sci. 2012 Nov;101(11):4277-92 [PMID: 22864977]
  74. Pharm Res. 2020 Aug 27;37(9):175 [PMID: 32856111]
  75. Clin Pharmacol Ther. 2015 Apr;97(4):380-94 [PMID: 25670219]
  76. Br J Pharmacol. 2010 Jul;160(6):1453-63 [PMID: 20590635]
  77. J Pharm Sci. 2011 Nov;100(11):4974-85 [PMID: 21766308]
  78. Theor Biol Med Model. 2009 Jan 15;6:2 [PMID: 19146691]
  79. Mol Psychiatry. 2021 Dec;26(12):7732-7745 [PMID: 34480089]
  80. J Pharmacol Exp Ther. 2002 Dec;303(3):1029-37 [PMID: 12438524]
  81. Mol Pharm. 2023 Jul 3;20(7):3505-3518 [PMID: 37283406]
  82. Front Neuroeng. 2013 Aug 30;6:7 [PMID: 24009582]
  83. Sci Rep. 2018 Jan 17;8(1):967 [PMID: 29343829]
  84. Pharm Res. 2022 Jul;39(7):1363-1392 [PMID: 35257288]
  85. Int J Pharm. 2014 Jan 2;460(1-2):101-7 [PMID: 24262988]
  86. Eur J Pharm Biopharm. 2017 May;114:38-42 [PMID: 28088633]
  87. Toxicol In Vitro. 2005 Apr;19(3):299-334 [PMID: 15713540]
  88. J Pharmacol Exp Ther. 2011 Nov;339(2):579-88 [PMID: 21828264]
  89. J Pharmacokinet Pharmacodyn. 2021 Oct;48(5):725-741 [PMID: 34142308]
  90. Eur J Pharm Biopharm. 2020 Mar;148:27-37 [PMID: 31945490]
  91. Br J Pharmacol. 2015 Oct;172(19):4714-25 [PMID: 26177775]
  92. Drug Metab Dispos. 2012 Oct;40(10):1909-16 [PMID: 22736307]
  93. Pharm Res. 2008 Aug;25(8):1737-50 [PMID: 18058202]
  94. Pharm Res. 2023 Nov;40(11):2555-2566 [PMID: 37442882]
  95. Drug Metab Pharmacokinet. 2016 Jun;31(3):224-33 [PMID: 27236639]
  96. Nat Rev Drug Discov. 2015 Dec;14(12):815-6 [PMID: 26585536]
  97. Front Oncol. 2014 Mar 03;4:41 [PMID: 24624364]
  98. Clin Pharmacol Ther. 2021 Aug;110(2):432-442 [PMID: 33675056]
  99. AAPS J. 2012 Sep;14(3):543-53 [PMID: 22588644]
  100. CPT Pharmacometrics Syst Pharmacol. 2017 Nov;6(11):765-777 [PMID: 28891201]

Grants

  1. 848068/European Union's Horizon 2020 research and innovation programme

MeSH Term

Animals
Extracellular Fluid
Rats
Humans
Caco-2 Cells
Dogs
Brain
ATP Binding Cassette Transporter, Subfamily B, Member 1
Blood-Brain Barrier
Models, Biological
Madin Darby Canine Kidney Cells
Biological Transport
Reproducibility of Results
Swine
LLC-PK1 Cells
ATP Binding Cassette Transporter, Subfamily B

Chemicals

ATP Binding Cassette Transporter, Subfamily B, Member 1
ATP Binding Cassette Transporter, Subfamily B

Word Cloud

Created with Highcharts 10.0.0vitroPKP-gpdata4substratesexpressioneffluxP-glycoproteinvivooftenwithinCNSpredictLeiCNS-PK3modelbrainextracellularfluidvaluestransportCLpredictedinfusionsdrugstudypredictionpredictionsbrainECFrobustPlasmapharmacokineticprofilesresemblecentralnervoussystemblood-brain-borderBBBprocesseslikeactiveMethodsCNS-PKthereforedesiredinvestigatewhetherapparentpermeabilityPcorrectedratioERextractedliteraturecanrepurposedinputphysiologically-basedconfidentlyratECFLiteratureCaco-2LLC-PK1-mdr1a/MDR1MDCKII-MDR1celllineusedcalculateclearanceSubsequentlyscaledrelativefactorREFbaseddifferencesBrainECFwelltwofolderrorobserved2short3continuousVariabilityparametersimpactedrateextentdistributionreducingapplicabilityNotablyuseobtainedsingleguaranteeaccurateresultedworseusingreportedlabsOverallshowspromisepredictinghighlightstranslationyetconcludeinformationneededcontextdependencyReliabilitymechanisticpharmacokineticsscalingcorrectly?BBBIVIVEPBPKPharmacokinetics

Similar Articles

Cited By