APNet, an explainable sparse deep learning model to discover differentially active drivers of severe COVID-19.

George I Gavriilidis, Vasileios Vasileiou, Stella Dimitsaki, Georgios Karakatsoulis, Antonis Giannakakis, Georgios A Pavlopoulos, Fotis Psomopoulos
Author Information
  1. George I Gavriilidis: Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, GR57001, Greece. ORCID
  2. Vasileios Vasileiou: Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, GR57001, Greece.
  3. Stella Dimitsaki: Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, GR57001, Greece.
  4. Georgios Karakatsoulis: Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, GR57001, Greece.
  5. Antonis Giannakakis: Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR68100, Greece.
  6. Georgios A Pavlopoulos: Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, GR16672, Greece. ORCID
  7. Fotis Psomopoulos: Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, GR57001, Greece. ORCID

Abstract

MOTIVATION: Computational analyses of bulk and single-cell omics provide translational insights into complex diseases, such as COVID-19, by revealing molecules, cellular phenotypes, and signalling patterns that contribute to unfavourable clinical outcomes. Current in silico approaches dovetail differential abundance, biostatistics, and machine learning, but often overlook nonlinear proteomic dynamics, like post-translational modifications, and provide limited biological interpretability beyond feature ranking.
RESULTS: We introduce APNet, a novel computational pipeline that combines differential activity analysis based on SJARACNe co-expression networks with PASNet, a biologically informed sparse deep learning model, to perform explainable predictions for COVID-19 severity. The APNet driver-pathway network ingests SJARACNe co-regulation and classification weights to aid result interpretation and hypothesis generation. APNet outperforms alternative models in patient classification across three COVID-19 proteomic datasets, identifying predictive drivers and pathways, including some confirmed in single-cell omics and highlighting under-explored biomarker circuitries in COVID-19.
AVAILABILITY AND IMPLEMENTATION: APNet's R, Python scripts, and Cytoscape methodologies are available at https://github.com/BiodataAnalysisGroup/APNet.

References

  1. IEEE Trans Pattern Anal Mach Intell. 1979 Feb;1(2):224-7 [PMID: 21868852]
  2. Nat Methods. 2021 Oct;18(10):1122-1127 [PMID: 34316068]
  3. Nat Commun. 2022 Apr 1;13(1):1728 [PMID: 35365602]
  4. Cell Rep Med. 2021 May 18;2(5):100287 [PMID: 33969320]
  5. Nat Commun. 2021 May 3;12(1):2493 [PMID: 33941778]
  6. Nat Commun. 2023 Feb 11;14(1):791 [PMID: 36774347]
  7. BMC Bioinformatics. 2023 May 15;24(1):198 [PMID: 37189058]
  8. Front Immunol. 2022 Sep 20;13:988685 [PMID: 36203591]
  9. Lancet Digit Health. 2022 Sep;4(9):e632-e645 [PMID: 35835712]
  10. BMC Med Genomics. 2019 Dec 23;12(Suppl 10):189 [PMID: 31865908]
  11. Cell. 2022 Mar 3;185(5):916-938.e58 [PMID: 35216673]
  12. Nat Commun. 2023 Sep 22;14(1):5921 [PMID: 37739942]
  13. Eur J Hum Genet. 2024 Jan;32(1):10-20 [PMID: 37938797]
  14. N Biotechnol. 2023 Nov 25;77:1-11 [PMID: 37329982]
  15. Cell Rep Med. 2022 Jul 19;3(7):100680 [PMID: 35839768]
  16. Bioinformatics. 2019 Jun 1;35(12):2165-2166 [PMID: 30388204]
  17. Mol Cell Proteomics. 2021;20:100168 [PMID: 34715355]
  18. BMC Bioinformatics. 2018 Dec 17;19(1):510 [PMID: 30558539]
  19. Sci Immunol. 2020 Jul 10;5(49): [PMID: 32651212]
  20. BMC Bioinformatics. 2006 Mar 20;7 Suppl 1:S7 [PMID: 16723010]
  21. Artif Intell Med. 2023 Mar;137:102490 [PMID: 36868685]
  22. Array (N Y). 2023 Mar;17:100271 [PMID: 36530931]
  23. Phys Rev Lett. 2002 Nov 11;89(20):208701 [PMID: 12443515]
  24. Bioinform Adv. 2024 Aug 14;4(1):vbae099 [PMID: 39143982]
  25. NPJ Precis Oncol. 2024 Jan 5;8(1):4 [PMID: 38182734]
  26. Nature. 2023 Oct;622(7982):348-358 [PMID: 37794188]
  27. NPJ Vaccines. 2023 Nov 20;8(1):178 [PMID: 37985781]
  28. Nat Immunol. 2022 Feb;23(2):165-176 [PMID: 35105981]
  29. Eur J Hum Genet. 2022 Aug;30(8):889-898 [PMID: 35577935]
  30. Genome Biol. 2023 May 5;24(1):107 [PMID: 37147723]
  31. Arch Toxicol. 2023 Jun;97(6):1439-1451 [PMID: 37127681]
  32. Infect Med (Beijing). 2024 Oct 19;3(4):100147 [PMID: 39649442]
  33. Nat Commun. 2023 May 4;14(1):2581 [PMID: 37142594]
  34. Nucleic Acids Res. 2023 Jul 5;51(W1):W168-W179 [PMID: 37166973]
  35. Nat Commun. 2021 May 10;12(1):2607 [PMID: 33972549]
  36. Front Immunol. 2023 Feb 17;14:1127358 [PMID: 36875108]

Grants

  1. /Horizon Europe

MeSH Term

COVID-19
Humans
Deep Learning
SARS-CoV-2
Proteomics
Computational Biology

Word Cloud

Created with Highcharts 10.0.0COVID-19APNetlearningsingle-cellomicsprovidedifferentialproteomicSJARACNesparsedeepmodelexplainableclassificationdriversMOTIVATION:ComputationalanalysesbulktranslationalinsightscomplexdiseasesrevealingmoleculescellularphenotypessignallingpatternscontributeunfavourableclinicaloutcomesCurrentsilicoapproachesdovetailabundancebiostatisticsmachineoftenoverlooknonlineardynamicslikepost-translationalmodificationslimitedbiologicalinterpretabilitybeyondfeaturerankingRESULTS:introducenovelcomputationalpipelinecombinesactivityanalysisbasedco-expressionnetworksPASNetbiologicallyinformedperformpredictionsseveritydriver-pathwaynetworkingestsco-regulationweightsaidresultinterpretationhypothesisgenerationoutperformsalternativemodelspatientacrossthreedatasetsidentifyingpredictivepathwaysincludingconfirmedhighlightingunder-exploredbiomarkercircuitriesAVAILABILITYANDIMPLEMENTATION:APNet'sRPythonscriptsCytoscapemethodologiesavailablehttps://githubcom/BiodataAnalysisGroup/APNetdiscoverdifferentiallyactivesevere

Similar Articles

Cited By