Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative lysosomal storage disorders characterized by excessive accumulation of lysosomal lipofuscin. Thirteen subtypes of NCL have been identified, each associated with distinct genes encoding various transmembrane proteins, secretory proteins, or lysosomal enzymes. Clinically, NCL manifests in infants through vision impairment, motor and cognitive dysfunctions, epilepsy, and premature death. The pathological complexity of NCL has hindered the development of effective clinical protocols. Current treatment modalities, including enzyme replacement therapy, pharmacological approaches, gene therapy, and stem cell therapy, have demonstrated limited efficacy. However, emerging evidence suggests a significant relationship between NCL and microglial cells, highlighting the potential of novel microglial cell replacement therapies. This review comprehensively examines the pathogenic genes associated with various NCL subtypes, elucidating their roles, clinical presentations, and corresponding mouse models. Especially, we thoroughly discuss the advances in the clinical study of potential therapeutics, which crucially calls for early diagnosis and treatment more than ever.