Comparative transcriptome analysis reveals molecular mechanisms of resistance in Chinese cabbage to pathotype 11.

Yue Qiu, Jinhao Zhang, Chunju Deng, Jiasheng Yuan, Bowen Wang, Han Meng, Mohamed Mohany, Liting Zeng, Lanfang Wei, Waqar Ahmed, Guanghai Ji
Author Information
  1. Yue Qiu: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  2. Jinhao Zhang: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  3. Chunju Deng: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  4. Jiasheng Yuan: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  5. Bowen Wang: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  6. Han Meng: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  7. Mohamed Mohany: Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
  8. Liting Zeng: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  9. Lanfang Wei: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  10. Waqar Ahmed: Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China.
  11. Guanghai Ji: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.

Abstract

Background and aims: Clubroot caused by the soilborne obligate parasite , is a devastating disease of Chinese cabbage and other crucifers. The innate diversity and adaptability of this pathogen pose significant challenges to effective control measures. However, the varied response mechanisms exhibited by hosts to pathotype 11 at a molecular level are still unclear.
Methods and results: This study investigated the resistance response and underlying molecular mechanism of two Chinese cabbage () varieties (JP and 83-1) to pathotype 11 through comparative transcriptome analysis and microscopic study. Results demonstrated that 14 days after inoculation (dai) is a critical time point of the infection process for resistant variety to inhibit the proliferation of . Although the highly resistant variety JP did not exhibit a complete immune response to pathotype 11, it demonstrated a significant resistance level against pathotype 11 by restricting its proliferation in the xylem vessels. Microscopic analysis at 21 dai revealed that the resistant cultivar (JP) root structure remained largely unaffected, while the roots of the susceptible cultivar (83-1) exhibited significant tissue distortion and gall formation, underscoring the effectiveness of the resistance mechanisms. Comparative transcriptome analysis revealed substantial differences in the number and types of differentially expressed genes (DEGs) between the two cultivars, highlighting the key pathways involved in the resistance response. In the resistant cultivar (JP), a total of 9,433 DEGs were identified, with 4,211 up-regulated and 5,222 down-regulated. In contrast, the susceptible cultivar (83-1) exhibited 6,456 DEGs, with 2,781 up-regulated and 3,675 down-regulated. The resistant cultivar showed a pronounced activation of genes involved in hormone signaling, cell wall, secondary metabolism, redox state, and signaling process. Therefore, our speculation revolves around the potential resistant mechanism of this variety, which inhibits the proliferation of in the roots via secondary metabolites, cell wall, and ROS and also regulates physiological mechanisms mediated by plant hormones such as ABA to adapt to adverse environmental conditions such as water scarcity induced by the pathogen.
Conclusion: This study unveils the intricate defense mechanisms potentially activated within Chinese cabbage when confronted with pathotype 11, offering valuable insights for breeding programs and the development of novel strategies for managing clubroot disease in Brassica crops. Furthermore, this study highlights the pivotal role of host-specific molecular defense mechanisms that underlie resistance to pathotype 11.

Keywords

References

  1. J Exp Bot. 2022 Apr 18;73(8):2650-2665 [PMID: 35083483]
  2. Front Plant Sci. 2020 Jul 09;11:1025 [PMID: 32754180]
  3. Plants (Basel). 2024 May 11;13(10): [PMID: 38794400]
  4. Biomolecules. 2023 Feb 05;13(2): [PMID: 36830668]
  5. Phytopathology. 2020 Oct;110(10):1704-1712 [PMID: 32407251]
  6. J Exp Bot. 2018 Aug 14;69(18):4443-4457 [PMID: 29931351]
  7. BMC Genomics. 2018 Jan 5;19(1):23 [PMID: 29304736]
  8. Front Plant Sci. 2016 Jan 05;6:1183 [PMID: 26779217]
  9. Planta. 2024 Mar 23;259(5):97 [PMID: 38520529]
  10. Ecotoxicol Environ Saf. 2019 May 30;173:314-321 [PMID: 30784794]
  11. BMC Genomics. 2018 Apr 16;19(1):254 [PMID: 29661147]
  12. Plants (Basel). 2022 Sep 02;11(17): [PMID: 36079677]
  13. Plant J. 2012 Jul;71(2):226-38 [PMID: 22394393]
  14. Genes (Basel). 2023 Oct 30;14(11): [PMID: 38002968]
  15. Semin Cell Dev Biol. 2023 Oct-Nov;148-149:22-32 [PMID: 36792438]
  16. Front Genet. 2022 Oct 20;13:1033288 [PMID: 36338979]
  17. Front Plant Sci. 2021 Aug 10;12:650252 [PMID: 34447397]
  18. Plant Direct. 2021 Aug 05;5(8):e335 [PMID: 34386691]
  19. Genome. 2021 Aug;64(8):735-760 [PMID: 33651640]
  20. J Vis Exp. 2021 Sep 18;(175): [PMID: 34605806]
  21. New Phytol. 2024 May;242(3):1289-1306 [PMID: 38426573]
  22. Microorganisms. 2022 Mar 14;10(3): [PMID: 35336194]
  23. BMC Plant Biol. 2010 Jul 19;10:151 [PMID: 20642851]
  24. Plant Cell Environ. 2009 Sep;32(9):1211-29 [PMID: 19389052]
  25. Int J Mol Sci. 2022 Dec 08;23(24): [PMID: 36555223]
  26. Physiol Plant. 2023 Nov-Dec;175(6):e14087 [PMID: 38148207]
  27. Asian Pac J Trop Med. 2014 Jan;7(1):1-8 [PMID: 24418074]
  28. Int J Mol Sci. 2023 Jan 02;24(1): [PMID: 36614228]
  29. Int J Mol Sci. 2020 Nov 08;21(21): [PMID: 33171675]
  30. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  31. Cell. 2023 Jun 8;186(12):2656-2671.e18 [PMID: 37295403]
  32. J Microbiol. 2022 May;60(5):496-510 [PMID: 35362894]
  33. New Phytol. 2005 Apr;166(1):241-50 [PMID: 15760367]
  34. J Exp Bot. 2015 Dec;66(22):7241-53 [PMID: 26357884]
  35. Front Physiol. 2016 Sep 13;7:402 [PMID: 27679580]
  36. Annu Rev Plant Biol. 2014;65:155-85 [PMID: 24579992]
  37. BMC Plant Biol. 2024 Jul 10;24(1):655 [PMID: 38987695]
  38. Nucleic Acids Res. 2021 Jan 8;49(D1):D545-D551 [PMID: 33125081]
  39. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  40. Front Plant Sci. 2016 Dec 23;7:1929 [PMID: 28066482]
  41. Funct Plant Biol. 2017 Jun;44(7):739-750 [PMID: 32480603]
  42. Int J Mol Sci. 2021 Oct 12;22(20): [PMID: 34681652]
  43. Front Genet. 2020 Jan 17;10:1275 [PMID: 32010176]
  44. Front Microbiol. 2024 Apr 15;15:1376579 [PMID: 38686113]
  45. Int J Mol Sci. 2020 Aug 03;21(15): [PMID: 32756478]
  46. Front Plant Sci. 2021 Dec 15;12:759623 [PMID: 34975941]
  47. BMC Plant Biol. 2019 Jul 1;19(1):288 [PMID: 31262271]

Word Cloud

Created with Highcharts 10.0.0mechanismspathotype11resistanceresistantChinesecabbageanalysiscultivarresponsemolecularstudyJPtranscriptomesignificantexhibited83-1varietyproliferationDEGsdefensediseasepathogenlevelmechanismtwodemonstrateddaiprocessrevealedrootssusceptibleComparativegenesinvolvedup-regulateddown-regulatedsignalingcellwallsecondaryphysiologicalclubrootBackgroundaims:ClubrootcausedsoilborneobligateparasitedevastatingcrucifersinnatediversityadaptabilityposechallengeseffectivecontrolmeasuresHowevervariedhostsstillunclearMethodsresults:investigatedunderlyingvarietiescomparativemicroscopicResults14 daysinoculationcriticaltimepointinfectioninhibitAlthoughhighlyexhibitcompleteimmunerestrictingxylemvesselsMicroscopic21rootstructureremainedlargelyunaffectedtissuedistortiongallformationunderscoringeffectivenesssubstantialdifferencesnumbertypesdifferentiallyexpressedcultivarshighlightingkeypathwaystotal9433identified42115222contrast645627813675showedpronouncedactivationhormonemetabolismredoxstateThereforespeculationrevolvesaroundpotentialinhibitsviametabolitesROSalsoregulatesmediatedplanthormonesABAadaptadverseenvironmentalconditionswaterscarcityinducedConclusion:unveilsintricatepotentiallyactivatedwithinconfrontedofferingvaluableinsightsbreedingprogramsdevelopmentnovelstrategiesmanagingBrassicacropsFurthermorehighlightspivotalrolehost-specificunderlierevealsPlasmodiophorabrassicaerace

Similar Articles

Cited By