Machine learning-enhanced surface-enhanced spectroscopic detection of polycyclic aromatic hydrocarbons in the human placenta.

Oara Neumann, Yilong Ju, Andres B Sanchez-Alvarado, Guodong Zhou, Weiwu Jiang, Bhagavatula Moorthy, Melissa A Suter, Ankit Patel, Peter Nordlander, Naomi J Halas
Author Information
  1. Oara Neumann: Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005.
  2. Yilong Ju: Department of Computer Science, Rice University, Houston, TX 77005.
  3. Andres B Sanchez-Alvarado: Laboratory for Nanophotonics, Rice University, Houston, TX 77005.
  4. Guodong Zhou: Institute of Biotechnology, Texas A&M University Health Sciences, Houston, TX 77030.
  5. Weiwu Jiang: Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030.
  6. Bhagavatula Moorthy: Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030.
  7. Melissa A Suter: Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030.
  8. Ankit Patel: Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030.
  9. Peter Nordlander: Laboratory for Nanophotonics, Rice University, Houston, TX 77005. ORCID
  10. Naomi J Halas: Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005. ORCID

Abstract

The detection and identification of polycyclic aromatic hydrocarbons (PAHs) and their derivatives, polycyclic aromatic compounds (PACs), are essential for environmental and health monitoring, for assessing toxicological exposure and their associated health risks. PAHs/PACs are the most dangerous chemicals found in tobacco smoke, and cigarette use during pregnancy can convey these molecules to the developing fetus through the placenta. This exposure is associated with many negative health outcomes, from premature birth to sudden infant death syndrome and adverse neurodevelopmental disorders. This study demonstrates the use of surface-enhanced Raman and surface-enhanced infrared absorption spectroscopies for direct detection of PAHs/PACs in human placental tissue. We applied two spectroscopy-informed machine learning algorithms, Characteristic Peak Extraction (CaPE) and Characteristic Peak Similarity (CaPSim), to identify the specific PAHs and PACs present in the placenta of women who smoked tobacco cigarettes in pregnancy compared to spectra of the placenta from self-reported nonsmokers. CaPE and CaPSim analysis enabled a clear distinction between these two groups. Independent verification was accomplished by detecting PAH-DNA and PAC-DNA adducts in the smoking group by means of a P-postlabeling assay. These findings highlight the effectiveness of combining surface-enhanced spectroscopies with informed ML analysis for the streamlined detection of hazardous environmental compounds in human tissues, suggesting broader applications in clinical diagnostics and public health surveillance.

Keywords

References

  1. Chem Biol Interact. 2014 Mar 5;210:1-11 [PMID: 24361490]
  2. Anal Chem. 2003 Jan 15;75(2):234-46 [PMID: 12553757]
  3. J Pediatr. 2010 Feb;156(2):185-90.e1 [PMID: 19818449]
  4. Environ Health (Wash). 2023 Aug 08;1(3):150-167 [PMID: 39473616]
  5. Science. 1986 Jan 3;231(4733):54-7 [PMID: 3941892]
  6. Carcinogenesis. 1986 Sep;7(9):1543-51 [PMID: 3017601]
  7. Environ Health Perspect. 1998 Jun;106 Suppl 3:821-6 [PMID: 9646044]
  8. Adv Drug Alcohol Res. 2023 Aug 11;3:11628 [PMID: 38389806]
  9. Environ Health Perspect. 1993 Mar;99:89-97 [PMID: 8319665]
  10. Molecules. 2022 Feb 18;27(4): [PMID: 35209168]
  11. Cancer Epidemiol Biomarkers Prev. 2008 Dec;17(12):3366-71 [PMID: 19064552]
  12. Environ Health. 2019 Aug 22;18(1):74 [PMID: 31439044]
  13. Mutat Res. 2000 Nov 20;471(1-2):57-70 [PMID: 11080661]
  14. Environ Health. 2010 Jan 29;9:5 [PMID: 20113464]
  15. Reprod Toxicol. 2020 Aug;95:1-10 [PMID: 32418891]
  16. Mol Hum Reprod. 2013 Jan;19(1):1-6 [PMID: 23139402]
  17. BMC Med. 2022 Apr 28;20(1):153 [PMID: 35477473]
  18. Nat Protoc. 2007;2(11):2772-81 [PMID: 18007613]
  19. J Biol Chem. 2004 Jun 4;279(23):23847-50 [PMID: 15028720]
  20. Int Arch Occup Environ Health. 2003 Jul;76(6):443-55 [PMID: 12750904]
  21. Antioxidants (Basel). 2022 Jan 05;11(1): [PMID: 35052622]
  22. Chem Res Toxicol. 2015 Aug 17;28(8):1616-26 [PMID: 26158771]
  23. Talanta. 1998 Nov;47(4):943-69 [PMID: 18967400]
  24. ACS Nano. 2023 Dec 26;17(24):25697-25706 [PMID: 38063501]
  25. Environ Res. 2021 May;196:110961 [PMID: 33675803]
  26. Obstet Gynecol. 2005 Nov;106(5 Pt 1):986-91 [PMID: 16260516]
  27. Lancet Glob Health. 2018 Jul;6(7):e769-e776 [PMID: 29859815]
  28. Nat Methods. 2020 Mar;17(3):261-272 [PMID: 32015543]
  29. J Environ Pathol Toxicol. 1980 Jun-Jul;3(5-6):537-67 [PMID: 7441099]
  30. Semin Cancer Biol. 2021 Nov;76:3-16 [PMID: 34242741]
  31. ACS Nano. 2023 Nov 14;17(21):21251-21261 [PMID: 37910670]
  32. Toxicol Sci. 2015 May;145(1):5-15 [PMID: 25911656]
  33. Int J Anal Chem. 2020 Aug 3;2020:4248029 [PMID: 32774379]
  34. J Perinatol. 2016 Nov;36(11):921-929 [PMID: 27629376]
  35. Front Microbiol. 2020 Nov 05;11:562813 [PMID: 33224110]
  36. Analyst. 2010 May;135(5):1138-46 [PMID: 20419267]
  37. Chem Rev. 2011 Jun 8;111(6):3913-61 [PMID: 21542636]
  38. Environ Health Perspect. 2022 Feb;130(2):25004 [PMID: 35225689]
  39. Am J Physiol Endocrinol Metab. 2008 Aug;295(2):E519-30 [PMID: 18559983]
  40. Toxicol Lett. 2017 Oct 5;280:10-19 [PMID: 28803881]
  41. J Environ Sci (China). 2023 Feb;124:806-822 [PMID: 36182185]
  42. Sci Rep. 2022 Aug 29;12(1):14671 [PMID: 36038588]
  43. Cancer Res. 1986 Jun;46(6):3046-54 [PMID: 3698023]
  44. J Phys Chem A. 2006 Jan 12;110(1):76-84 [PMID: 16392842]
  45. Biochem Biophys Res Commun. 2019 Aug 20;516(2):344-349 [PMID: 31208719]
  46. Toxicology. 2019 Jan 1;411:133-142 [PMID: 30321648]
  47. Int J Mol Sci. 2024 Mar 28;25(7): [PMID: 38612589]
  48. Metabolism. 2010 Oct;59(10):1481-90 [PMID: 20462615]
  49. Cancer Lett. 2013 Jun 28;334(1):10-9 [PMID: 22960573]
  50. Am J Obstet Gynecol. 2011 Sep;205(3):246.e1-7 [PMID: 21803321]
  51. Carcinogenesis. 1986 Sep;7(9):1615-7 [PMID: 3742734]
  52. Oncotarget. 2017 Sep 15;8(45):79034-79045 [PMID: 29108285]
  53. Proc Natl Acad Sci U S A. 2022 Dec 27;119(52):e2211406119 [PMID: 36534806]
  54. PLoS One. 2011;6(10):e26589 [PMID: 22066002]
  55. Epigenetics. 2011 Nov;6(11):1284-94 [PMID: 21937876]
  56. ACS Nano. 2008 Apr;2(4):707-18 [PMID: 19206602]
  57. Prenat Diagn. 2020 Aug;40(9):1193-1200 [PMID: 32010988]
  58. Int J Environ Res Public Health. 2022 Jul 06;19(14): [PMID: 35886113]
  59. Carcinogenesis. 1982;3(9):1081-92 [PMID: 7139866]

Grants

  1. P42 ES027725/NIEHS NIH HHS
  2. P30 ES030285/NIEHS NIH HHS
  3. C-1222/Welch Foundation (The Welch Foundation)
  4. P42ES027725-05/HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
  5. C-1220/Welch Foundation (The Welch Foundation)

MeSH Term

Humans
Female
Polycyclic Aromatic Hydrocarbons
Pregnancy
Machine Learning
Placenta
Spectrum Analysis, Raman
Adult
DNA Adducts

Chemicals

Polycyclic Aromatic Hydrocarbons
DNA Adducts

Word Cloud

Similar Articles

Cited By