Nucleosome binding by TP53, TP63, and TP73 is determined by the composition, accessibility, and helical orientation of their binding sites.

Patrick D Wilson, Xinyang Yu, Christopher R Handelmann, Michael J Buck
Author Information
  1. Patrick D Wilson: Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203, USA.
  2. Xinyang Yu: Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203, USA.
  3. Christopher R Handelmann: Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203, USA.
  4. Michael J Buck: Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203, USA; mjbuck@buffalo.edu. ORCID

Abstract

The TP53 family of transcription factors plays key roles in driving development and combating cancer by regulating gene expression. TP53, TP63, and TP73-the three members of the TP53 family-regulate gene expression by binding to their DNA binding sites, many of which are situated within nucleosomes. To thoroughly examine the nucleosome-binding abilities of the TP53 family, we used Pioneer-seq, a technique that assesses a transcription factor's binding affinity to its DNA-binding sites at all possible positions within the nucleosome core particle. Using Pioneer-seq, we analyzed the binding affinities of TP53, TP63, and TP73 to 10 TP53 family binding sites across the nucleosome core particle. We find that the affinities of TP53, TP63, and TP73 for nucleosomes are primarily determined by the positioning of TP53 family binding sites within nucleosomes; TP53 family members bind strongly to the more accessible edges of nucleosomes but weakly to the less accessible centers of nucleosomes. Our results further show that the DNA-helical orientation of TP53 family binding sites within nucleosomal DNA impacts the nucleosome-binding affinities of TP53 family members, with binding-site composition impacting the affinity of each TP53 family member only when the binding-site location is accessible. Taken together, our results show that the accessibility, composition, and helical orientation of TP53 family binding sites collectively determine the nucleosome-binding affinities of TP53, TP63, and TP73. These findings help explain the rules underlying TP53 family-nucleosome binding and thus provide requisite insight into how we may better control gene expression changes involved in development and tumor suppression.

References

  1. Oncogene. 2007 Apr 2;26(15):2226-42 [PMID: 17401432]
  2. Genome Res. 2012 Dec;22(12):2497-506 [PMID: 22960375]
  3. J Biol Chem. 1998 Aug 14;273(33):21352-8 [PMID: 9694896]
  4. Cell Rep. 2018 Dec 18;25(12):3490-3503.e4 [PMID: 30566872]
  5. J Nucleic Acids. 2012;2012:687359 [PMID: 22007292]
  6. Genome Biol. 2015 Dec 18;16:284 [PMID: 26683334]
  7. Nature. 2018 Oct;562(7725):76-81 [PMID: 30250250]
  8. Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10385-90 [PMID: 21606339]
  9. PeerJ. 2016 Oct 18;4:e2584 [PMID: 27781170]
  10. Cancer Cell Int. 2021 Dec 24;21(1):703 [PMID: 34952583]
  11. Nucleic Acids Res. 2023 Mar 21;51(5):2333-2344 [PMID: 36727449]
  12. Mol Cell Biol. 1992 Jun;12(6):2866-71 [PMID: 1588974]
  13. Cell Death Differ. 2024 Jul;31(7):836-843 [PMID: 38951700]
  14. Dev Dyn. 2018 May;247(5):779-787 [PMID: 29396915]
  15. Bioinformatics. 2018 Oct 15;34(20):3600 [PMID: 29788404]
  16. Mol Cell Biol. 2005 Jul;25(14):6077-89 [PMID: 15988020]
  17. Mol Cancer Res. 2004 Jul;2(7):371-86 [PMID: 15280445]
  18. BMC Genomics. 2014 Nov 29;15:1042 [PMID: 25433490]
  19. Genome Res. 2015 Feb;25(2):179-88 [PMID: 25391375]
  20. Oncogene. 2007 Sep 13;26(42):6125-32 [PMID: 17404570]
  21. Bioinformatics. 2011 Apr 1;27(7):1017-8 [PMID: 21330290]
  22. Genome Res. 2010 Oct;20(10):1361-8 [PMID: 20716666]
  23. Nucleic Acids Res. 2024 Jan 5;52(D1):D1082-D1088 [PMID: 37953330]
  24. J Biochem. 2020 Dec 26;168(6):669-675 [PMID: 32702132]
  25. Proc Natl Acad Sci U S A. 2005 May 3;102(18):6431-6 [PMID: 15843459]
  26. Epigenetics. 2023 Dec;18(1):2173931 [PMID: 36760085]
  27. Nucleic Acids Res. 2011 Mar;39(5):1919-32 [PMID: 21071400]
  28. Genome Res. 2019 Jan;29(1):107-115 [PMID: 30409772]
  29. Nat Rev Mol Cell Biol. 2022 Jul;23(7):449-464 [PMID: 35264768]
  30. Nucleic Acids Res. 2024 Jan 5;52(D1):D174-D182 [PMID: 37962376]
  31. Bioinformatics. 2012 Apr 1;28(7):1021-3 [PMID: 22302569]
  32. J Mol Biol. 2024 Sep 1;436(17):168655 [PMID: 38878855]
  33. Cell Cycle. 2021 Apr;20(8):792-807 [PMID: 33764853]
  34. Mol Cell. 2006 Jun 23;22(6):741-753 [PMID: 16793544]
  35. Nucleic Acids Res. 2018 Sep 19;46(16):8153-8167 [PMID: 30107566]
  36. J Cell Sci. 2019 Oct 3;132(19): [PMID: 31582429]
  37. PNAS Nexus. 2022 Sep 04;1(4):pgac177 [PMID: 36714865]
  38. BMC Genomics. 2015 Aug 07;16:584 [PMID: 26251276]
  39. Cell Death Differ. 2006 Jun;13(6):962-72 [PMID: 16601753]
  40. Biochim Biophys Acta. 2015 Jun;1849(6):590-600 [PMID: 25797018]
  41. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  42. Nucleic Acids Res. 2007;35(1):340-52 [PMID: 17170001]
  43. Mol Cell. 2001 Jul;8(1):57-69 [PMID: 11511360]
  44. Cell Death Differ. 2018 Jan;25(1):154-160 [PMID: 29099487]
  45. Annu Rev Genet. 2020 Nov 23;54:367-385 [PMID: 32886547]
  46. J Cell Sci. 2000 May;113 ( Pt 10):1661-70 [PMID: 10769197]
  47. Epigenetics Chromatin. 2014 Nov 20;7(1):33 [PMID: 25473421]
  48. Nature. 2023 Jul;619(7969):385-393 [PMID: 37407816]
  49. Epigenetics Chromatin. 2021 Apr 17;14(1):20 [PMID: 33865440]
  50. BMC Genomics. 2009 Dec 23;10:628 [PMID: 20030809]
  51. Nucleic Acids Res. 2017 Aug 21;45(14):8208-8224 [PMID: 28505376]
  52. Nucleic Acids Res. 2017 Sep 29;45(17):9889-9900 [PMID: 28973438]
  53. Front Cell Dev Biol. 2021 Sep 28;9:737735 [PMID: 34650986]
  54. EMBO Rep. 2015 Jul;16(7):863-78 [PMID: 26034101]
  55. J Biol Chem. 2019 Jul 5;294(27):10720-10736 [PMID: 31113863]
  56. BMC Mol Biol. 2012 May 06;13:15 [PMID: 22559821]
  57. Nature. 1997 Sep 18;389(6648):251-60 [PMID: 9305837]
  58. Nat Commun. 2014 Sep 18;5:4909 [PMID: 25233085]
  59. Science. 2020 Jun 26;368(6498):1460-1465 [PMID: 32327602]
  60. Nat Commun. 2016 May 06;7:11485 [PMID: 27151365]
  61. J Vis Exp. 2013 Apr 26;(74):e4401 [PMID: 23644419]
  62. Front Cell Dev Biol. 2021 Jul 05;9:701986 [PMID: 34291055]
  63. Nat Genet. 1992 Apr;1(1):45-9 [PMID: 1301998]
  64. Nucleic Acids Res. 2008 Mar;36(5):1589-98 [PMID: 18234719]
  65. Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14387-92 [PMID: 22908277]
  66. Protein Sci. 2018 Jan;27(1):14-25 [PMID: 28710774]
  67. Mol Genet Genomics. 2020 Jul;295(4):825-835 [PMID: 32296927]
  68. Nat Chem Biol. 2020 Oct;16(10):1078-1086 [PMID: 32719556]

Grants

  1. R01 GM132199/NIGMS NIH HHS

MeSH Term

Nucleosomes
Tumor Suppressor Protein p53
Binding Sites
Humans
Tumor Protein p73
Transcription Factors
Protein Binding
Tumor Suppressor Proteins
DNA

Chemicals

Nucleosomes
Tumor Suppressor Protein p53
TP63 protein, human
Tumor Protein p73
Transcription Factors
TP53 protein, human
TP73 protein, human
Tumor Suppressor Proteins
DNA

Word Cloud

Created with Highcharts 10.0.0TP53bindingfamilysitesTP63nucleosomeswithinaffinitiesTP73geneexpressionmembersnucleosome-bindingaccessibleorientationcompositiontranscriptiondevelopmentDNAPioneer-seqaffinitynucleosomecoreparticledeterminedresultsshowbinding-siteaccessibilityhelicalfactorsplayskeyrolesdrivingcombatingcancerregulatingTP73-thethreefamily-regulatemanysituatedthoroughlyexamineabilitiesusedtechniqueassessesfactor'sDNA-bindingpossiblepositionsUsinganalyzed10acrossfindprimarilypositioningbindstronglyedgesweaklylesscentersDNA-helicalnucleosomalimpactsimpactingmemberlocationTakentogethercollectivelydeterminefindingshelpexplainrulesunderlyingfamily-nucleosomethusproviderequisiteinsightmaybettercontrolchangesinvolvedtumorsuppressionNucleosome

Similar Articles

Cited By