Enzymatic properties of iron oxide nanoclusters and their application as a colorimetric glucose detection probe.

Dahyun Bae, Minhee Kim, Jin-Sil Choi
Author Information
  1. Dahyun Bae: Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea jisil.choi@hanbat.ac.kr.
  2. Minhee Kim: Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea jisil.choi@hanbat.ac.kr.
  3. Jin-Sil Choi: Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea jisil.choi@hanbat.ac.kr. ORCID

Abstract

Nanozymes have attracted attention owing to their distinct catalytic capabilities and potential applications, being advantageous compared to natural enzymes in terms of storage and cost efficiency. In this study, we investigated the enzymatic properties of iron oxide nanoclusters (IOCs) formed through the clustering of small nanoparticles. Our findings reveal that the enzymatic activity of IOCs is enhanced as their size increases. Additionally, we demonstrated that the size of the unit particles within IOCs is highly dependent on the nucleation environment, which is a crucial factor in determining the overall size of the IOCs. Importantly, the surface area of IOCs is more closely related to the size of the individual unit particles rather than the entire cluster. Smaller unit particle sizes within IOCs resulted in an increase in nanocluster size, thereby augmenting the specific surface area. The optimal IOC exhibited superior stability under various conditions and a broader range of reactivity compared to natural enzymes, making it a promising probe material for point-of-care tests across diverse environments. Furthermore, its effectiveness as a glucose detection probe was demonstrated, highlighting its potential for practical applications. The remarkable enzyme-like efficacy of IOCs not only enhances their utility in on-site detection technologies but also establishes them as a versatile detection probe.

References

  1. Theranostics. 2020 Jan 1;10(2):687-706 [PMID: 31903145]
  2. Chem Commun (Camb). 2018 Dec 6;54(98):13813-13816 [PMID: 30460939]
  3. J Am Chem Soc. 2004 Sep 22;126(37):11458-9 [PMID: 15366890]
  4. Exploration (Beijing). 2023 Jul 07;3(4):20220151 [PMID: 37933237]
  5. Small. 2022 Dec;18(50):e2204372 [PMID: 36316230]
  6. Angew Chem Int Ed Engl. 2022 Nov 21;61(47):e202212013 [PMID: 36195554]
  7. 3 Biotech. 2018 Jun;8(6):279 [PMID: 29881657]
  8. Nanoscale. 2012 Jul 7;4(13):3969-76 [PMID: 22627993]
  9. ACS Omega. 2021 Nov 10;6(46):31161-31167 [PMID: 34841158]
  10. Sci Rep. 2015 Mar 23;5:9320 [PMID: 25799320]
  11. Colloids Surf B Biointerfaces. 2023 Jan;221:112950 [PMID: 36327773]
  12. Biochim Biophys Acta. 1990 Oct 18;1041(1):43-7 [PMID: 2223846]
  13. Biomaterials. 2009 Sep;30(27):4716-22 [PMID: 19515418]
  14. J Mater Chem B. 2019 Sep 11;7(35):5412-5422 [PMID: 31414694]
  15. ACS Nano. 2014 Oct 28;8(10):10704-14 [PMID: 25256366]
  16. Colloids Surf B Biointerfaces. 2017 May 1;153:52-60 [PMID: 28214671]
  17. Biosensors (Basel). 2021 Oct 09;11(10): [PMID: 34677338]
  18. Mater Today Bio. 2023 Feb 14;19:100568 [PMID: 36846307]
  19. Chemistry. 2011 Jan 10;17(2):620-5 [PMID: 21207581]
  20. Analyst. 2020 Jul 7;145(13):4398-4420 [PMID: 32436931]
  21. Nanoscale. 2019 Feb 7;11(6):2631-2636 [PMID: 30694277]
  22. J Hazard Mater. 2014 Jun 30;275:121-35 [PMID: 24857896]
  23. Nanomaterials (Basel). 2021 Nov 12;11(11): [PMID: 34835810]
  24. Theranostics. 2017 Jul 22;7(13):3207-3227 [PMID: 28900505]
  25. Nat Nanotechnol. 2007 Sep;2(9):577-83 [PMID: 18654371]
  26. Adv Mater. 2024 Mar;36(10):e2211041 [PMID: 36799556]
  27. Biosens Bioelectron. 2022 Dec 15;218:114768 [PMID: 36240630]
  28. Environ Sci Technol. 2012 Sep 18;46(18):10145-53 [PMID: 22924545]
  29. Biochemistry. 2000 Jan 11;39(1):263-70 [PMID: 10625502]
  30. Food Chem. 2022 Dec 15;397:133756 [PMID: 35901614]
  31. J Phys Chem Lett. 2022 Sep 29;13(38):8872-8878 [PMID: 36125422]
  32. Sensors (Basel). 2019 Feb 15;19(4): [PMID: 30781431]
  33. ACS Appl Mater Interfaces. 2022 Oct 12;14(40):45217-45228 [PMID: 36190449]
  34. Colloids Surf B Biointerfaces. 2017 Jun 1;154:239-245 [PMID: 28347945]
  35. Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:1374-1383 [PMID: 30889671]
  36. ACS Appl Mater Interfaces. 2018 Dec 12;10(49):41935-41946 [PMID: 30465605]
  37. Talanta. 2023 Jun 1;258:124407 [PMID: 36871515]
  38. J Mater Chem B. 2018 Aug 7;6(29):4783-4791 [PMID: 32254305]
  39. Anal Chem. 2008 Mar 15;80(6):2250-4 [PMID: 18290671]
  40. J Biol Chem. 1953 Mar;201(1):427-34 [PMID: 13044812]

Word Cloud

Created with Highcharts 10.0.0IOCssizeprobedetectionunitpotentialapplicationscomparednaturalenzymesenzymaticpropertiesironoxidenanoclustersdemonstratedparticleswithinsurfaceareaglucoseNanozymesattractedattentionowingdistinctcatalyticcapabilitiesadvantageoustermsstoragecostefficiencystudyinvestigatedformedclusteringsmallnanoparticlesfindingsrevealactivityenhancedincreasesAdditionallyhighlydependentnucleationenvironmentcrucialfactordeterminingoverallImportantlycloselyrelatedindividualratherentireclusterSmallerparticlesizesresultedincreasenanoclustertherebyaugmentingspecificoptimalIOCexhibitedsuperiorstabilityvariousconditionsbroaderrangereactivitymakingpromisingmaterialpoint-of-caretestsacrossdiverseenvironmentsFurthermoreeffectivenesshighlightingpracticalremarkableenzyme-likeefficacyenhancesutilityon-sitetechnologiesalsoestablishesversatileEnzymaticapplicationcolorimetric

Similar Articles

Cited By

No available data.