Neurodevelopmental Implications Underpinning Hereditary Spastic Paraplegia.

Yiqiang Zhi, Yan Shi, Danping Lu, Dan Xu
Author Information
  1. Yiqiang Zhi: Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
  2. Yan Shi: Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China.
  3. Danping Lu: College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
  4. Dan Xu: Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China. ORCID

Abstract

BACKGROUND: Hereditary spastic paraplegia (HSP) is a group of rare genetic neurodegenerative disorders characterized by corticospinal tract abnormalities. But frequently, abnormalities of proteins implicated in HSP have been identified in brain disorders of childhood, raising the possibility that early brain developmental mechanism underlying HSP.
RESULTS AND CONCLUSIONS: Here we summarized the clinical features of 89 HSP subtypes and found most have onset of symptoms earliest reported in infancy or early childhood. Importantly, HSP patients showed early brain developmental related phenotypes such as microcephaly, ventricular enlargement, and corpus callosum dysplasia. In addition, the expression trajectories analysis showed HSP genes were diffusely expressed across all human prenatal cortical regions and most genes enriched from post-conception weeks 8-24, periods characterized by neuro progenitor proliferation and neurogenesis. Furthermore, studies utilizing patient derived induced pluripotent stem cells (iPSCs)/organoids and mouse models have suggested that most HSP proteins play either direct or indirect roles in the development of the central nervous system. Therefore, HSP possesses a neurodevelopmental aspect and is not merely a degenerative disease, which may aid in better understanding the pathogenesis of this disease.

Keywords

References

  1. Am J Hum Genet. 2009 Jul;85(1):40-52 [PMID: 19559397]
  2. Brain. 2011 Jan;134(Pt 1):137-42 [PMID: 20923788]
  3. Hum Mutat. 2015 Feb;36(2):240-9 [PMID: 25402622]
  4. Hum Mol Genet. 2020 Jan 15;29(2):320-334 [PMID: 31915823]
  5. Eur J Neurol. 2019 May;26(5):e61-e62 [PMID: 30980493]
  6. Nat Neurosci. 2016 Feb;19(2):253-62 [PMID: 26752160]
  7. J Clin Invest. 2018 Jun 1;128(6):2252-2265 [PMID: 29533923]
  8. Neurology. 2009 Oct 6;73(14):1111-9 [PMID: 19805727]
  9. Commun Biol. 2023 Dec 1;6(1):1219 [PMID: 38040957]
  10. Cell Rep. 2016 Jun 28;16(1):79-91 [PMID: 27320912]
  11. Lancet Neurol. 2008 Dec;7(12):1127-38 [PMID: 19007737]
  12. Handb Clin Neurol. 2013;111:129-41 [PMID: 23622158]
  13. Gene. 2015 Feb 15;557(1):11-8 [PMID: 25476027]
  14. BMC Med Genet. 2017 May 2;18(1):48 [PMID: 28464862]
  15. J Physiol. 2023 Aug;601(16):3533-3556 [PMID: 37309891]
  16. Science. 2014 Jan 31;343(6170):506-511 [PMID: 24482476]
  17. J Neurosci. 2018 Jun 6;38(23):5289-5301 [PMID: 29735556]
  18. Nat Rev Mol Cell Biol. 2005 Oct;6(10):777-88 [PMID: 16314867]
  19. Cerebellum. 2017 Apr;16(2):525-551 [PMID: 27271711]
  20. Ann Clin Transl Neurol. 2015 Jun;2(6):648-61 [PMID: 26125040]
  21. Brain. 2009 Feb;132(Pt 2):426-38 [PMID: 19056803]
  22. Biochem Biophys Res Commun. 2023 Sep 17;673:169-174 [PMID: 37392480]
  23. Neuron. 2017 Jan 4;93(1):99-114 [PMID: 28017473]
  24. J Clin Invest. 2010 Apr;120(4):1097-110 [PMID: 20200447]
  25. Front Mol Biosci. 2021 Nov 26;8:690899 [PMID: 34901147]
  26. Nat Rev Neurol. 2022 Feb;18(2):117-124 [PMID: 34987232]
  27. Mol Genet Genomic Med. 2014 Jul;2(4):319-25 [PMID: 25077174]
  28. Cell Rep. 2024 Mar 26;43(3):113818 [PMID: 38402586]
  29. Fluids Barriers CNS. 2021 Apr 19;18(1):20 [PMID: 33874972]
  30. Hum Mol Genet. 2018 Jul 15;27(14):2517-2530 [PMID: 29726929]
  31. Front Neurosci. 2020 May 07;14:401 [PMID: 32457567]
  32. Trends Neurosci. 2000 Dec;23(12):599-605 [PMID: 11137149]
  33. Cell Rep. 2016 Aug 23;16(8):2129-2141 [PMID: 27524618]
  34. Nat Commun. 2022 Feb 25;13(1):1058 [PMID: 35217685]
  35. Am J Hum Genet. 2016 May 5;98(5):1038-1046 [PMID: 27153400]
  36. Cell Rep. 2015 Jun 9;11(9):1377-84 [PMID: 26004184]
  37. Autophagy. 2022 Mar;18(3):496-517 [PMID: 34130600]
  38. Int J Mol Sci. 2020 Mar 01;21(5): [PMID: 32121580]
  39. Proc Natl Acad Sci U S A. 2016 May 17;113(20):5736-41 [PMID: 27140644]
  40. Nat Genet. 2007 Mar;39(3):366-72 [PMID: 17322883]
  41. J Cell Biol. 1998 Apr 20;141(2):431-41 [PMID: 9548721]
  42. Front Syst Neurosci. 2019 Jan 15;12:74 [PMID: 30697151]
  43. Eur J Pediatr. 2015 Nov;174(11):1541-4 [PMID: 25948108]
  44. Neurosci Res. 2013 Nov;77(3):137-42 [PMID: 23999326]
  45. Zool Res. 2023 May 18;44(3):650-662 [PMID: 37161652]
  46. Science. 2022 Sep 23;377(6613):eabq5011 [PMID: 36137051]
  47. Stem Cell Res. 2020 Oct;48:101999 [PMID: 32971459]
  48. Eur J Hum Genet. 2012 Apr;20(4):476-9 [PMID: 22146942]
  49. Ann Neurol. 2016 May;79(5):826-840 [PMID: 26971897]
  50. Nat Commun. 2019 Oct 21;10(1):4790 [PMID: 31636353]
  51. Physiol Rev. 2011 Apr;91(2):555-602 [PMID: 21527732]
  52. Brain. 2022 Sep 14;145(9):3095-3107 [PMID: 35718349]
  53. Cell. 2013 Oct 10;155(2):296-307 [PMID: 24120131]
  54. Cerebellum. 2021 Aug;20(4):631-658 [PMID: 33534089]
  55. Front Genet. 2022 Jan 13;12:812640 [PMID: 35096021]
  56. Eur J Hum Genet. 2018 May;26(5):695-708 [PMID: 29463858]
  57. Neuroimage Clin. 2020;26:102211 [PMID: 32113174]
  58. J Cell Biol. 2023 Jun 5;222(6): [PMID: 36952540]
  59. Neurobiol Dis. 2017 Jun;102:21-37 [PMID: 28237315]
  60. Neuron. 2014 Oct 22;84(2):370-85 [PMID: 25374360]
  61. Nat Commun. 2019 Feb 4;10(1):568 [PMID: 30718476]
  62. Nat Rev Neurosci. 2001 Jul;2(7):484-91 [PMID: 11433373]
  63. JAMA Neurol. 2014 Jan;71(1):11-22 [PMID: 24276092]
  64. EMBO Rep. 2020 Apr 3;21(4):e47857 [PMID: 32133764]
  65. J Med Genet. 2011 Feb;48(2):141-4 [PMID: 20972249]
  66. Am J Hum Genet. 2011 Jun 10;88(6):788-795 [PMID: 21620353]
  67. Hum Mol Genet. 2019 Mar 15;28(6):961-971 [PMID: 30476097]
  68. Nat Commun. 2016 Mar 17;7:11020 [PMID: 26984393]
  69. Am J Med Genet A. 2014 Jul;164A(7):1677-85 [PMID: 24700674]
  70. J Huntingtons Dis. 2020;9(3):245-251 [PMID: 32894247]
  71. Front Cell Dev Biol. 2020 Jul 23;8:670 [PMID: 32850804]
  72. Neurol Sci. 2024 Sep;45(9):4373-4381 [PMID: 38607533]
  73. Brain. 2017 Mar 1;140(3):547-554 [PMID: 28052917]
  74. Mech Ageing Dev. 2021 Dec;200:111575 [PMID: 34600936]
  75. HGG Adv. 2021 Apr 8;2(2): [PMID: 33880452]
  76. Neurosci Bull. 2023 Jun;39(6):881-892 [PMID: 36152121]
  77. J Clin Neurosci. 2021 Mar;85:67-71 [PMID: 33581793]
  78. Nat Rev Neurosci. 2010 May;11(5):316-28 [PMID: 20404840]
  79. Nat Neurosci. 2010 Dec;13(12):1463-71 [PMID: 21037580]
  80. Nat Neurosci. 2022 Apr;25(4):458-473 [PMID: 35379995]
  81. Cell Biosci. 2022 Jul 6;12(1):103 [PMID: 35794642]
  82. Ann Neurol. 2021 Nov;90(5):738-750 [PMID: 34564892]
  83. BMC Neurol. 2016 May 21;16:74 [PMID: 27206732]
  84. Neuron. 2003 Oct 9;40(2):229-42 [PMID: 14556706]
  85. Dev Cell. 2016 Jul 25;38(2):171-85 [PMID: 27396362]
  86. Am J Med Genet A. 2018 Apr;176(4):985-991 [PMID: 29430868]
  87. Sci Adv. 2021 Feb 17;7(8): [PMID: 33597231]
  88. Brain. 2019 Jun 1;142(6):1561-1572 [PMID: 31135052]
  89. Cell. 2017 May 4;169(4):621-635.e16 [PMID: 28475893]
  90. Neuroimage. 2020 Nov 15;222:117243 [PMID: 32822813]
  91. PLoS One. 2011;6(12):e29584 [PMID: 22216323]
  92. Commun Biol. 2019 Oct 17;2:380 [PMID: 31637311]
  93. World Neurosurg. 2021 Jul;151:e1024-e1035 [PMID: 34033953]
  94. Mov Disord. 2015 Apr 15;30(5):655-61 [PMID: 25820811]
  95. Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11836-41 [PMID: 22753484]
  96. J Clin Invest. 2012 Feb;122(2):538-44 [PMID: 22232211]
  97. Genet Med. 2021 Mar;23(3):524-533 [PMID: 33188300]
  98. Neurogenetics. 2010 Oct;11(4):379-89 [PMID: 20390432]
  99. Hum Mol Genet. 2017 Mar 15;26(6):1031-1040 [PMID: 28007905]
  100. Science. 2015 Mar 27;347(6229):1465-70 [PMID: 25721503]
  101. Dis Model Mech. 2017 Jan 1;10(1):53-62 [PMID: 27935820]
  102. Cell. 2013 Aug 1;154(3):505-17 [PMID: 23911318]
  103. Neurogenetics. 2010 Oct;11(4):441-8 [PMID: 20593214]
  104. J Exp Med. 2016 Apr 4;213(4):499-515 [PMID: 27001749]
  105. Neurol Sci. 2021 Mar;42(3):883-894 [PMID: 33439395]
  106. Brain. 2021 Oct 22;144(9):2659-2669 [PMID: 34415322]
  107. Annu Rev Neurosci. 2012;35:25-47 [PMID: 22540978]
  108. Science. 2020 Aug 14;369(6505):787-793 [PMID: 32675289]
  109. Brain. 2023 May 2;146(5):2003-2015 [PMID: 36315648]
  110. Nat Commun. 2019 Apr 1;10(1):1465 [PMID: 30931944]

Grants

  1. 2023Y9271/Joint Funds for the Innovation of Science and Technology, Fujian Province
  2. 2024J010028,2023J02018/Natural Science Foundation of Fujian Province
  3. 32371025/National Natural Science Foundation of China

MeSH Term

Humans
Spastic Paraplegia, Hereditary
Animals
Brain
Neurodevelopmental Disorders

Word Cloud

Created with Highcharts 10.0.0HSPdisordersbrainearlyHereditaryspasticparaplegianeurodegenerativecharacterizedabnormalitiesproteinschildhooddevelopmentalmechanismclinicalfeaturesshowedexpressiontrajectoriesgenesneurodevelopmentaldiseaseBACKGROUND:groupraregeneticcorticospinaltractfrequentlyimplicatedidentifiedraisingpossibilityunderlyingRESULTSANDCONCLUSIONS:summarized89subtypesfoundonsetsymptomsearliestreportedinfancyImportantlypatientsrelatedphenotypesmicrocephalyventricularenlargementcorpuscallosumdysplasiaadditionanalysisdiffuselyexpressedacrosshumanprenatalcorticalregionsenrichedpost-conceptionweeks8-24periodsneuroprogenitorproliferationneurogenesisFurthermorestudiesutilizingpatientderivedinducedpluripotentstemcellsiPSCs/organoidsmousemodelssuggestedplayeitherdirectindirectrolesdevelopmentcentralnervoussystemThereforepossessesaspectmerelydegenerativemayaidbetterunderstandingpathogenesisNeurodevelopmentalImplicationsUnderpinningSpasticParaplegiahereditaryproteinfunction

Similar Articles

Cited By

No available data.