Kv4.2 Regulates Basal Synaptic Strength by Inhibiting R-Type Calcium Channels in the Hippocampus.

Seung Yeon Lee, Jiwoo Shin, Min Jeong Kwon, Yujin Kim, Won-Kyung Ho, Suk-Ho Lee
Author Information
  1. Seung Yeon Lee: Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
  2. Jiwoo Shin: Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
  3. Min Jeong Kwon: Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
  4. Yujin Kim: Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
  5. Won-Kyung Ho: Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea wonkyung@snu.ac.kr leesukho@snu.ac.kr. ORCID
  6. Suk-Ho Lee: Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea wonkyung@snu.ac.kr leesukho@snu.ac.kr. ORCID

Abstract

Kv4.2 subunits, which mediate transient A-type K current, are crucial in regulating neuronal excitability and synaptic responses within the hippocampus. While their contribution to activity-dependent regulation of synaptic response is well-established, the impact of Kv4.2 on basal synaptic strength remains elusive. To address this gap, we introduced a Kv4.2-specific antibody (anti-Kv4.2) into hippocampal neurons of mice of both sexes to selectively inhibit postsynaptic Kv4.2, enabling direct examination of its impact on excitatory postsynaptic potentials (EPSPs) and currents (EPSCs) during basal synaptic activity. Our results demonstrated that blocking Kv4.2 significantly enhanced the amplitude of EPSPs. This amplification was proportional to the increase in the amplitude of EPSCs, which, in turn, correlated with the expression level of Kv4.2 in the dendritic regions of the hippocampus. Furthermore, the anti-Kv4.2-induced increase in EPSC amplitude was associated with a decrease in the failure rate of EPSCs evoked by minimal stimulation, suggesting that blocking Kv4.2 facilitates the recruitment of AMPA receptors to both silent and functional synapses to enhance synaptic efficacy. The anti-Kv4.2-induced synaptic potentiation was effectively abolished by intracellular 10 mM BAPTA or by blocking R-type calcium channels (RTCCs) and downstream signaling molecules, including protein kinases A and C. Importantly, Kv4.2 inhibition did not occlude further synaptic potentiation induced by high-frequency stimulation, suggesting that anti-Kv4.2-induced synaptic strengthening involves unique mechanisms that are distinct from long-term potentiation pathways. Taken together, these findings underscore the essential role of Kv4.2 in the regulation of basal synaptic strength, which is mediated by the inhibition of RTCCs.

Keywords

References

  1. J Neurosci. 2006 Nov 22;26(47):12143-51 [PMID: 17122039]
  2. iScience. 2021 Jul 16;24(8):102876 [PMID: 34386734]
  3. PLoS One. 2009 Aug 07;4(8):e6549 [PMID: 19662093]
  4. J Neurosci. 2020 Mar 11;40(11):2200-2214 [PMID: 32047055]
  5. Neuron. 2008 Sep 25;59(6):902-13 [PMID: 18817730]
  6. Cereb Cortex. 2019 Jul 22;29(8):3527-3539 [PMID: 30215686]
  7. Epilepsia. 2000 Aug;41(8):1072-3 [PMID: 10961646]
  8. Cell Rep. 2022 Jan 18;38(3):110264 [PMID: 35045307]
  9. J Membr Biol. 1996 May;151(1):77-90 [PMID: 8661496]
  10. Nature. 2000 Nov 30;408(6812):589-93 [PMID: 11117746]
  11. Nat Rev Neurosci. 2008 Nov;9(11):813-25 [PMID: 18854855]
  12. Nat Neurosci. 2003 Feb;6(2):136-43 [PMID: 12536214]
  13. Mol Brain. 2023 May 22;16(1):45 [PMID: 37217996]
  14. Neuroscientist. 2008 Jun;14(3):276-86 [PMID: 18413784]
  15. Neuron. 2004 Oct 14;44(2):351-64 [PMID: 15473972]
  16. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8366-71 [PMID: 12048251]
  17. Neuron. 1998 Sep;21(3):561-70 [PMID: 9768842]
  18. Channels (Austin). 2020 Dec;14(1):362-379 [PMID: 33079629]
  19. Neuron. 2007 Jun 21;54(6):933-47 [PMID: 17582333]
  20. J Neurosci. 2004 Sep 8;24(36):7903-15 [PMID: 15356203]
  21. J Neurosci. 2022 May 11;42(19):3919-3930 [PMID: 35361702]
  22. Am J Physiol Cell Physiol. 2006 Mar;290(3):C852-61 [PMID: 16251476]
  23. J Physiol. 2008 Mar 15;586(6):1475-80 [PMID: 18096597]
  24. Front Cell Neurosci. 2015 Dec 09;9:469 [PMID: 26696828]
  25. Nat Neurosci. 2005 May;8(5):642-9 [PMID: 15852011]
  26. Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):E9006-E9014 [PMID: 30181277]
  27. Cold Spring Harb Perspect Biol. 2012 Jun 01;4(6): [PMID: 22510460]
  28. Mol Brain. 2013 Jan 22;6:5 [PMID: 23339575]
  29. Biophys J. 1999 Dec;77(6):3034-42 [PMID: 10585925]
  30. Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10144-9 [PMID: 12114547]
  31. Neuron. 2006 Jul 20;51(2):213-25 [PMID: 16846856]
  32. Nature. 1997 Jun 26;387(6636):869-75 [PMID: 9202119]
  33. Neuron. 1995 Aug;15(2):427-34 [PMID: 7646894]
  34. Sci Signal. 2023 Oct 24;16(808):eadk9224 [PMID: 37874884]
  35. Nat Neurosci. 2004 Feb;7(2):126-35 [PMID: 14730307]
  36. Philos Trans R Soc Lond B Biol Sci. 2003 Apr 29;358(1432):707-14 [PMID: 12740116]
  37. J Neurosci. 1998 May 15;18(10):3521-8 [PMID: 9570783]
  38. J Comput Neurosci. 1999 Jul-Aug;7(1):5-15 [PMID: 10481998]
  39. Neuron. 2011 Aug 11;71(3):512-28 [PMID: 21835347]
  40. J Neurosci. 2002 Jun 15;22(12):4860-8 [PMID: 12077183]
  41. J Neurosci. 2008 Jul 23;28(30):7513-9 [PMID: 18650329]
  42. Sci Rep. 2016 Feb 09;6:21615 [PMID: 26857841]
  43. Elife. 2018 Mar 26;7: [PMID: 29578411]
  44. Science. 1988 Oct 7;242(4875):81-4 [PMID: 2845577]
  45. Neuron. 2017 Aug 16;95(4):928-943.e3 [PMID: 28817805]
  46. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4702-7 [PMID: 9539802]
  47. Learn Mem. 2012 Jun 14;19(7):282-93 [PMID: 22700470]
  48. Nat Rev Neurosci. 2012 Feb 15;13(3):169-82 [PMID: 22334212]
  49. J Neurochem. 2008 Jul;106(1):182-92 [PMID: 18363830]
  50. J Neurosci. 2005 Jun 29;25(26):6037-46 [PMID: 15987933]
  51. Nat Neurosci. 2010 Mar;13(3):333-7 [PMID: 20154682]
  52. Open Neurol J. 2016 Sep 30;10:99-126 [PMID: 27843503]
  53. Cell Rep. 2021 Apr 6;35(1):108951 [PMID: 33826884]
  54. Philos Trans R Soc Lond B Biol Sci. 2013 Dec 02;369(1633):20130136 [PMID: 24298139]
  55. Hippocampus. 2011 Mar;21(3):288-97 [PMID: 20087888]
  56. J Neurosci. 2014 Jul 9;34(28):9182-9 [PMID: 25009251]
  57. J Physiol. 2008 Aug 15;586(16):3881-92 [PMID: 18566000]
  58. Neuron. 2014 Jan 22;81(2):379-87 [PMID: 24462100]
  59. J Physiol. 2005 Nov 15;569(Pt 1):41-57 [PMID: 16141270]
  60. J Physiol. 2008 Mar 15;586(6):1565-79 [PMID: 18187474]
  61. Nat Neurosci. 2003 Sep;6(9):948-55 [PMID: 12937422]

MeSH Term

Animals
Shal Potassium Channels
Mice
Hippocampus
Male
Female
Excitatory Postsynaptic Potentials
Synapses
Mice, Inbred C57BL

Chemicals

Shal Potassium Channels

Word Cloud

Created with Highcharts 10.0.0Kv42synapticbasalanti-Kv4currenthippocampusstrengthpostsynapticEPSCsblockingamplitude2-inducedpotentiationtransientA-typeregulationimpactexcitatoryEPSPsincreasestimulationsuggestingRTCCsinhibitionsubunitsmediateKcrucialregulatingneuronalexcitabilityresponseswithincontributionactivity-dependentresponsewell-establishedremainselusiveaddressgapintroduced2-specificantibodyhippocampalneuronsmicesexesselectivelyinhibitenablingdirectexaminationpotentialscurrentsactivityresultsdemonstratedsignificantlyenhancedamplificationproportionalturncorrelatedexpressionleveldendriticregionsFurthermoreEPSCassociateddecreasefailurerateevokedminimalfacilitatesrecruitmentAMPAreceptorssilentfunctionalsynapsesenhanceefficacyeffectivelyabolishedintracellular10 mMBAPTAR-typecalciumchannelsdownstreamsignalingmoleculesincludingproteinkinasesCImportantlyoccludeinducedhigh-frequencystrengtheninginvolvesuniquemechanismsdistinctlong-termpathwaysTakentogetherfindingsunderscoreessentialrolemediatedRegulatesBasalSynapticStrengthInhibitingR-TypeCalciumChannelsHippocampusK+

Similar Articles

Cited By