Numerical modeling of oxygen diffusion in tissue spheroids undergoing fusion using function representation and finite volumes.

Katherine Vilinski-Mazur, Bogdan Kirillov, Oleg Rogozin, Dmitry Kolomenskiy
Author Information
  1. Katherine Vilinski-Mazur: Center for Materials Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia.
  2. Bogdan Kirillov: Center for Materials Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia. Bogdan.Kirillov@skoltech.ru.
  3. Oleg Rogozin: Center for Materials Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia.
  4. Dmitry Kolomenskiy: Center for Materials Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia.

Abstract

A three-dimensional cell culture called a spheroid serves as a foundational entity in a wide variety of modern tissue engineering applications, including 3D-bioprinting and preclinical drug testing. Lack of oxygen within tissue spheroids hinders metabolism of cells and eventually leads to cell death. Prevention of necrosis is crucial to success of tissue engineering methods and such prevention requires estimation of cell viability in the spheroid. We propose a novel approach for numerical modeling of diffusion in tissue spheroids during their fusion. The approach is based on numerical solutions of partial differential equations and the application of Function Representation (FRep) framework for geometric modeling. We present modeling of oxygen diffusion based on meshes derived from the geometry of fusing spheroids, a method for selecting optimal spheroid size, and several statistics for estimating cellular viability. Our findings provide insights into oxygen diffusion in three-dimensional cell cultures thus improving the robustness of biotechnological methods that employ tissue spheroids.

References

  1. Caplan, A. L. Finding a solution to the organ shortage. CMAJ 188, 1182–1183 (2016). [PMID: 27527486]
  2. Levitt, M. Could the organ shortage ever be met?. Life Sci. Soc. Policy 11, 1–6 (2015). [DOI: 10.1186/s40504-015-0023-1]
  3. Organ Donation Statistics | organdonor.gov—organdonor.gov. https://www.organdonor.gov/learn/organ-donation-statistics . Accessed 15 Jul 2023.
  4. Abouna, G. M. Organ shortage crisis: Problems and possible solutions. In Transplantation Proceedings. Vol. 40. 34–38 (Elsevier, 2008).
  5. Maathuis, M.-H.J., Leuvenink, H. G. & Ploeg, R. J. Perspectives in organ preservation. Transplantation 83, 1289–1298 (2007). [PMID: 17519776]
  6. Hameed, A. M., Hawthorne, W. J. & Pleass, H. C. Advances in organ preservation for transplantation. ANZ J. Surg. 87, 976–980 (2017). [PMID: 27490874]
  7. Sage, A. T. et al. Testing the delivery of human organ transportation with drones in the real world. Sci. Robot. 7, eadf5798 (2022).
  8. Duquesnoy, R. J. Clinical usefulness of hlamatchmaker in hla epitope matching for organ transplantation. Curr. Opin. Immunol. 20, 594–601 (2008). [PMID: 18655832]
  9. Mattei, N., Saffidine, A. & Walsh, T. Mechanisms for online organ matching. In IJCAI. 345–351 (2017).
  10. Kolff, W. J. The artificial kidney and its effect on the development of other artificial organs. Nat. Med. 8, 1063–1065 (2002). [PMID: 12357233]
  11. Jovic, T. H., Combellack, E. J., Jessop, Z. M. & Whitaker, I. S. 3D bioprinting and the future of surgery. Front. Surg. 7, 609836 (2020). [PMID: 33330613]
  12. Panda, S. et al. A focused review on three-dimensional bioprinting technology for artificial organ fabrication. Biomater. Sci. 10, 5054–5080 (2022). [PMID: 35876134]
  13. Atala, A. Tissue engineering of artificial organs. J. Endourol. 14, 49–57 (2000). [PMID: 10735573]
  14. Robu, A., Mironov, V., Neagu, A. et al. Using sacrificial cell spheroids for the bioprinting of perfusable 3D tissue and organ constructs: A computational study. Comput. Math. Methods Med. 2019 (2019).
  15. Zhang, C., Zeng, C., Wang, Z., Zeng, T. & Wang, Y. Optimization of stress distribution of bone-implant interface (BII). Biomater. Adv. 147, 213342 (2023). [PMID: 36841109]
  16. Derman, I. D. et al. High-throughput bioprinting of the nasal epithelium using patient-derived nasal epithelial cells. Biofabrication 15, 044103 (2023). [DOI: 10.1088/1758-5090/aced23]
  17. Mehesz, A. N. et al. Scalable robotic biofabrication of tissue spheroids. Biofabrication 3, 025002 (2011). [PMID: 21562365]
  18. Baraniak, P. R. & McDevitt, T. C. Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res. 347, 701–711 (2012). [PMID: 21833761]
  19. Vadivelu, R. K., Kamble, H., Shiddiky, M. J. & Nguyen, N.-T. Microfluidic technology for the generation of cell spheroids and their applications. Micromachines 8, 94 (2017). [>PMCID: ]
  20. Sun, W. et al. A simple and efficient strategy for preparing a cell-spheroid-based bioink. Adv. Healthc. Mater. 11, 2200648 (2022). [DOI: 10.1002/adhm.202200648]
  21. Daly, A. C., Prendergast, M. E., Hughes, A. J. & Burdick, J. A. Bioprinting for the biologist. Cell 184, 18–32 (2021). [PMID: 33417859]
  22. Datta, P. et al. Essential steps in bioprinting: From pre-to post-bioprinting. Biotechnol. Adv. 36, 1481–1504 (2018). [PMID: 29909085]
  23. Shafiee, A., Norotte, C. & Ghadiri, E. Cellular bioink surface tension: A tunable biophysical parameter for faster maturation of bioprinted tissue. Bioprinting 8, 13–21 (2017). [DOI: 10.1016/j.bprint.2017.10.001]
  24. Mir, A. et al. 3D bioprinting for vascularization. Bioengineering 10, 606 (2023). [PMID: 37237676]
  25. Chae, S., Ha, D.-H. & Lee, H. 3D bioprinting strategy for engineering vascularized tissue models. Int. J. Bioprint. 9 (2023).
  26. Chen, Y., Wang, L., Wang, Y. & Zhou, Y. Microtube embedded hydrogel bioprinting for vascularization of tissue-engineered scaffolds. Biotechnol. Bioeng. 120, 3592–3601 (2023). [PMID: 37638665]
  27. Mazloomnejad, R. et al. Angiogenesis and re-endothelialization in decellularized scaffolds: Recent advances and current challenges in tissue engineering. Front. Bioeng. Biotechnol. 11, 1103727 (2023). [PMID: 36873356]
  28. Cui, H., Nowicki, M., Fisher, J. P. & Zhang, L. G. 3D bioprinting for organ regeneration. Adv. Healthc. Mater. 6, 1601118 (2017). [DOI: 10.1002/adhm.201601118]
  29. Wang, X. et al. 3D bioprinted glioma microenvironment for glioma vascularization. J. Biomed. Mater. Res. Part A 109, 915–925 (2021). [DOI: 10.1002/jbm.a.37082]
  30. Apelgren, P. et al. Long-term in vivo integrity and safety of 3D-bioprinted cartilaginous constructs. J. Biomed. Mater. Res. Part B Appl. Biomater. 109, 126–136 (2021). [DOI: 10.1002/jbm.b.34687]
  31. Leek, R., Grimes, D. R., Harris, A. L. & McIntyre, A. Methods: Using three-dimensional culture (spheroids) as an in vitro model of tumour hypoxia. Tumor Microenviron. Study Protoc. 167–196 (2016).
  32. Sego, T., Kasacheuski, U., Hauersperger, D., Tovar, A. & Moldovan, N. I. A heuristic computational model of basic cellular processes and oxygenation during spheroid-dependent biofabrication. Biofabrication 9, 024104 (2017). [PMID: 28617667]
  33. Ma, H.-L. et al. Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration. Mol. Imaging 11, 7290–2012 (2012). [DOI: 10.2310/7290.2012.00012]
  34. Song, H. et al. Single-cell analysis of hepatoblastoma identifies tumor signatures that predict chemotherapy susceptibility using patient-specific tumor spheroids. Nat. Commun. 13, 4878 (2022). [PMID: 36008377]
  35. Hu, Z. et al. Vascularized tumor spheroid-on-a-chip model verifies synergistic vasoprotective and chemotherapeutic effects. ACS Biomater. Sci. Eng. 8, 1215–1225 (2022). [PMID: 35167260]
  36. Perche, F. & Torchilin, V. P. Cancer cell spheroids as a model to evaluate chemotherapy protocols. Cancer Biol. Ther. 13, 1205–1213 (2012). [PMID: 22892843]
  37. Roy, M., Alix, C., Bouakaz, A., Serrière, S. & Escoffre, J.-M. Tumor spheroids as model to design acoustically mediated drug therapies: A review. Pharmaceutics 15, 806 (2023). [PMID: 36986667]
  38. Wu, L. Y., Di Carlo, D. & Lee, L. P. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed. Microdev. 10, 197–202 (2008). [DOI: 10.1007/s10544-007-9125-8]
  39. Lazzari, G., Couvreur, P. & Mura, S. Multicellular tumor spheroids: A relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polymer Chem. 8, 4947–4969 (2017). [DOI: 10.1039/C7PY00559H]
  40. Williams, G. H. & Stoeber, K. The cell cycle and cancer. J. Pathol. 226, 352–364 (2012). [PMID: 21990031]
  41. Bresciani, F. Cell proliferation in cancer. Eur. J. Cancer 1965(4), 343–366 (1968). [DOI: 10.1016/0014-2964(68)90025-X]
  42. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016). [PMID: 27386546]
  43. Grimes, D. R. & Currell, F. J. Oxygen diffusion in ellipsoidal tumour spheroids. J. R. Soc. Interface 15, 20180256 (2018). [PMID: 30111663]
  44. Pasko, A., Adzhiev, V., Sourin, A. & Savchenko, V. Function representation in geometric modeling: Concepts, implementation and applications. Vis. Comput. 11, 429–446 (1995). [DOI: 10.1007/BF02464333]
  45. Pasko, A., Fryazinov, O., Vilbrandt, T., Fayolle, P.-A. & Adzhiev, V. Procedural function-based modelling of volumetric microstructures. Graphical Models 73, 165–181 (2011). [DOI: 10.1016/j.gmod.2011.03.001]
  46. Gardner, G. Y. Simulation of natural scenes using textured quadric surfaces. ACM Siggraph Comput. Graph. 18, 11–20 (1984). [DOI: 10.1145/964965.808572]
  47. Eymard, R., Gallouët, T. & Herbin, R. Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000).
  48. Mazumder, S. Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods (Academic Press, 2015).
  49. Jiang, Y., Pjesivac-Grbovic, J., Cantrell, C. & Freyer, J. P. A multiscale model for avascular tumor growth. Biophys. J. 89, 3884–3894 (2005). [PMID: 16199495]
  50. Li, J. F. & Lowengrub, J. The effects of cell compressibility, motility and contact inhibition on the growth of tumor cell clusters using the cellular potts model. J. Theor. Biol. 343, 79–91 (2014). [PMID: 24211749]
  51. Popławski, N. J. et al. Front instabilities and invasiveness of simulated avascular tumors. Bull. Math. Biol. 71, 1189–1227 (2009). [PMID: 19234746]
  52. Sego, T., Glazier, J. A. & Tovar, A. Unification of aggregate growth models by emergence from cellular and intracellular mechanisms. R. Soc. Open Sci. 7, 192148 (2020). [PMID: 32968501]
  53. Bustamante, D. J. et al. Biofabrication of spheroids fusion-based tumor models: computational simulation of glucose effects. Biofabrication 13, 035010 (2021). [DOI: 10.1088/1758-5090/abe025]
  54. Ghaffarizadeh, A., Heiland, R., Friedman, S. H., Mumenthaler, S. M. & Macklin, P. Physicell: An open source physics-based cell simulator for 3-d multicellular systems. PLoS Comput. Biol. 14, e1005991 (2018). [PMID: 29474446]
  55. Popov, D. et al. Cad/cam system for additive manufacturing with a robust and efficient topology optimization algorithm based on the function representation. Appl. Sci. 11, 7409 (2021). [DOI: 10.3390/app11167409]
  56. Nayyeri, P., Zareinia, K. & Bougherara, H. Planar and nonplanar slicing algorithms for fused deposition modeling technology: A critical review. Int. J. Adv. Manuf. Technol. 119, 2785–2810 (2022). [DOI: 10.1007/s00170-021-08347-x]
  57. Maltsev, E., Popov, D., Chugunov, S., Pasko, A. & Akhatov, I. An accelerated slicing algorithm for FRep models. Appl. Sci. 11, 6767 (2021). [DOI: 10.3390/app11156767]
  58. Hanisch, F. Marching square. In Marching Square. 1–1 (CGEMS: Computer Graphics Educational Materials Source, 2004).
  59. Samet, H. Connected component labeling using quadtrees. J. ACM (JACM) 28, 487–501 (1981). [DOI: 10.1145/322261.322267]
  60. Geuzaine, C. & Remacle, J.-F. Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009). [DOI: 10.1002/nme.2579]
  61. Zhu, J. The Finite Element Method: Its Basis and Fundamentals (Elsevier, 2013).
  62. Han, S. J., Kwon, S. & Kim, K. S. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int. 21, 1–19 (2021). [DOI: 10.1186/s12935-021-01853-8]
  63. Seabold, S. & Perktold, J. statsmodels: Econometric and statistical modeling with python. In 9th Python in Science Conference (2010).
  64. MacKay, D. J. et al. Bayesian nonlinear modeling for the prediction competition. ASHRAE Trans. 100, 1053–1062 (1994).
  65. Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
  66. Kosheleva, N. et al. Laser-based technique for controlled damage of mesenchymal cell spheroids: A first step in studying reparation in vitro. Biol. Open 5, 993–1000 (2016). [PMID: 27334698]
  67. Grimes, D. R., Fletcher, A. G. & Partridge, M. Oxygen consumption dynamics in steady-state tumour models. R. Soc. Open Sci. 1, 140080 (2014). [PMID: 26064525]
  68. Fonseca, J., Moradi, F., Valente, A. & Stuart, J. Oxygen and glucose levels in cell culture media determine resveratrolś effects on growth, hydrogen peroxide production, and mitochondrial dynamics. Antioxidants 7, 157. https://doi.org/10.3390/antiox7110157 (2018). [DOI: 10.3390/antiox7110157]
  69. Mueller-Klieser, W. & Sutherland, R. Oxygen tensions in multicell spheroids of two cell lines. Br. J. Cancer 45, 256–264 (1982). [PMID: 7059474]
  70. Choudhry, H. & Harris, A. L. Advances in hypoxia-inducible factor biology. Cell Metab. 27, 281–298 (2018). [PMID: 29129785]
  71. Chen, Z., Han, F., Du, Y., Shi, H. & Zhou, W. Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Trans. Target. Ther. 8, 70 (2023). [DOI: 10.1038/s41392-023-01332-8]
  72. Zanoni, M. et al. 3D tumor spheroid models for in vitro therapeutic screening: A systematic approach to enhance the biological relevance of data obtained. Sci. Rep. 6, 19103 (2016). [PMID: 26752500]
  73. Grimes, D. R., Kelly, C., Bloch, K. & Partridge, M. A method for estimating the oxygen consumption rate in multicellular tumour spheroids. J. R. Soc. Interface 11, 20131124 (2014). [PMID: 24430128]
  74. Vinci, M. et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 10, 1–21 (2012). [DOI: 10.1186/1741-7007-10-29]
  75. Kwak, T. J. & Lee, E. In vitro modeling of solid tumor interactions with perfused blood vessels. Sci. Rep. 10, 20142 (2020). [PMID: 33214583]
  76. Brassard-Jollive, N., Monnot, C., Muller, L. & Germain, S. In vitro 3D systems to model tumor angiogenesis and interactions with stromal cells. Front. Cell Dev. Biol. 8, 594903 (2020). [PMID: 33224956]
  77. Figtree, G. A., Bubb, K. J., Tang, O., Kizana, E. & Gentile, C. Vascularized cardiac spheroids as novel 3D in vitro models to study cardiac fibrosis. Cells Tissues Organs 204, 191–198 (2017). [PMID: 28772272]
  78. Brito, M. D. et al. Oxygen consumption evaluation: An important indicator of metabolic state, cellular function, and cell fate along neural deregulation. Toxic. Assess. Methods Protoc. 207–230 (2021).
  79. Clark, L. C. Jr. & Clark, E. W. A personalized history of the clark oxygen electrode. Int. Anesthesiol. Clin. 25, 1–29 (1987). [PMID: 3323059]
  80. Strovas, T. J. et al. Direct measurement of oxygen consumption rates from attached and unattached cells in a reversibly sealed, diffusionally isolated sample chamber. Adv. Biosci. Biotechnol. (Print) 5, 398 (2010).
  81. Mirabello, V., Cortezon-Tamarit, F. & Pascu, S. I. Oxygen sensing, hypoxia tracing and in vivo imaging with functional metalloprobes for the early detection of non-communicable diseases. Front. Chem. 6, 27 (2018). [PMID: 29527524]
  82. Muehllehner, G. & Karp, J. S. Positron emission tomography. Phys. Med. Biol. 51, R117 (2006). [PMID: 16790899]
  83. Huang, Y. et al. Optical coherence tomography detects necrotic regions and volumetrically quantifies multicellular tumor spheroids. Cancer Res. 77, 6011–6020 (2017). [PMID: 28904062]
  84. Langan, L. M. et al. Direct measurements of oxygen gradients in spheroid culture system using electron parametric resonance oximetry. PloS one 11, e0149492 (2016). [PMID: 26900704]
  85. De Moor, L. et al. High-throughput fabrication of vascularized spheroids for bioprinting. Biofabrication 10, 035009 (2018). [PMID: 29798932]
  86. Amaral, R. L., Miranda, M., Marcato, P. D. & Swiech, K. Comparative analysis of 3D bladder tumor spheroids obtained by forced floating and hanging drop methods for drug screening. Front. Physiol. 8, 605 (2017). [PMID: 28878686]
  87. Pasko, A., Vilbrandt, T., Fryazinov, O. & Adzhiev, V. Procedural function-based spatial microstructures. In 2010 Shape Modeling International Conference 47–56 (2010).
  88. Savchenko, V. V., Basnakian, A. G., Pasko, A. A., Ten, S. V. & Huang, R. Simulation of a growing mammalian cell colony: Collision-based packing algorithm for deformable particles. Comput. Graph. 437–447 (1995).
  89. Savchenko, V., Basnakian, A. & Pasko, A. Computer simulation and analysis of a growing mammalian cell colony. In Lectures on Mathematics in the Life Sciences 111–120 (1999).
  90. Pakhomova, C., Pasko, A. & Akhatov, I. Modeling and simulation of tissue spheroids fusion based on the function representation approach. Mater. Sci. Forum 1046, 119–123 (2021). [DOI: 10.4028/www.scientific.net/MSF.1046.119]
  91. Rvachev, V. On the analytical description of some geometric objects. Rep. Ukr . Acad. Sci. 153(4), 765–767 (1963).
  92. Pasko, G., Pasko, A., Ikeda, M. & Kunii, T. Bounded blending operations. Proc. SMI Shape Model. Int. 2002, 95–103 (2002).
  93. Pasko, G., Pasko, A. & Kunii, T. Space-time blending. Comput. Anim. Virtual Worlds 15, 109–121 (2004). [DOI: 10.1002/cav.12]
  94. Reis, R. L. Encyclopedia of Tissue Engineering and Regenerative Medicine (Academic Press, 2019).
  95. Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620-631 (1998).
  96. Tipping, M. E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001).
  97. Barlow, R. E. & Brunk, H. D. The isotonic regression problem and its dual. J. Am. Stat. Assoc. 67, 140–147 (1972). [DOI: 10.1080/01621459.1972.10481216]
  98. Luss, R. & Rosset, S. Generalized isotonic regression. J. Comput. Graph. Stat. 23, 192–210 (2014). [DOI: 10.1080/10618600.2012.741550]

Grants

  1. "Spheroid Revolution"/Skoltech Translational Research and Innovation Program
  2. 075-15-2019-1661/Ministry of Science and Higher Education of the Russian Federation

MeSH Term

Spheroids, Cellular
Oxygen
Diffusion
Humans
Cell Survival
Tissue Engineering
Models, Biological
Cell Culture Techniques, Three Dimensional

Chemicals

Oxygen

Word Cloud

Created with Highcharts 10.0.0tissuespheroidscelloxygenmodelingdiffusionspheroidthree-dimensionalengineeringmethodsviabilityapproachnumericalfusionbasedculturecalledservesfoundationalentitywidevarietymodernapplicationsincluding3D-bioprintingpreclinicaldrugtestingLackwithinhindersmetabolismcellseventuallyleadsdeathPreventionnecrosiscrucialsuccesspreventionrequiresestimationproposenovelsolutionspartialdifferentialequationsapplicationFunctionRepresentationFRepframeworkgeometricpresentmeshesderivedgeometryfusingmethodselectingoptimalsizeseveralstatisticsestimatingcellularfindingsprovideinsightsculturesthusimprovingrobustnessbiotechnologicalemployNumericalundergoingusingfunctionrepresentationfinitevolumes

Similar Articles

Cited By