Deep-learning-ready RGB-depth images of seedling development.

F��lix Mercier, Geoffroy Couasnet, Angelina El Ghaziri, Nizar Bouhlel, Alain Sarniguet, Muriel Marchi, Matthieu Barret, David Rousseau
Author Information
  1. F��lix Mercier: Universit�� d'Angers, 40 Rue de Rennes, 49000, Angers, France.
  2. Geoffroy Couasnet: Universit�� d'Angers, 40 Rue de Rennes, 49000, Angers, France.
  3. Angelina El Ghaziri: Institut Agro, 2 rue Andr�� Le N��tre, 49000, Angers, France.
  4. Nizar Bouhlel: Institut Agro, 2 rue Andr�� Le N��tre, 49000, Angers, France.
  5. Alain Sarniguet: Universit�� d'Angers, 40 Rue de Rennes, 49000, Angers, France.
  6. Muriel Marchi: Universit�� d'Angers, 40 Rue de Rennes, 49000, Angers, France.
  7. Matthieu Barret: Universit�� d'Angers, 40 Rue de Rennes, 49000, Angers, France.
  8. David Rousseau: Universit�� d'Angers, 40 Rue de Rennes, 49000, Angers, France. david.rousseau@univ-angers.fr.

Abstract

In the era of machine learning-driven plant imaging, the production of annotated datasets is a very important contribution. In this data paper, a unique annotated dataset of seedling emergence kinetics is proposed. It is composed of almost 70,000 RGB-depth frames and more than 700,000 plant annotations. The dataset is shown valuable for training deep learning models and performing high-throughput phenotyping by imaging. The ability of such models to generalize to several species and outperform the state-of-the-art owing to the delivered dataset is demonstrated. We also discuss how this dataset raises new questions in plant phenotyping.

Keywords

References

  1. Sci Data. 2024 Jan 23;11(1):109 [PMID: 38263173]
  2. IEEE Trans Pattern Anal Mach Intell. 2024 Jan;46(1):150-170 [PMID: 37815974]
  3. Data Brief. 2019 Jul 19;25:104289 [PMID: 31406905]
  4. Plant Methods. 2020 Jul 30;16:103 [PMID: 32742300]
  5. Gigascience. 2018 Feb 1;7(2):1-11 [PMID: 29186425]
  6. Data Brief. 2022 Mar 09;42:108035 [PMID: 35313502]
  7. J Exp Bot. 2016 Feb;67(3):567-91 [PMID: 26585226]
  8. Nucleic Acids Res. 2024 Jan 5;52(D1):D1530-D1537 [PMID: 37930849]
  9. Front Plant Sci. 2019 Apr 24;10:508 [PMID: 31068958]
  10. Comput Methods Programs Biomed. 2023 Oct;240:107681 [PMID: 37385142]
  11. BMC Bioinformatics. 2023 Nov 7;24(1):419 [PMID: 37936066]
  12. Sci Data. 2016 Aug 16;3:160055 [PMID: 27529152]
  13. Sensors (Basel). 2021 Dec 17;21(24): [PMID: 34960519]
  14. Data Brief. 2024 Sep 13;57:110928 [PMID: 39376481]

Word Cloud

Created with Highcharts 10.0.0datasetplantRGB-depthimagingannotatedseedlingkinetics000learningmodelsphenotypingeramachinelearning-drivenproductiondatasetsimportantcontributiondatapaperuniqueemergenceproposedcomposedalmost70frames700annotationsshownvaluabletrainingdeepperforminghigh-throughputabilitygeneralizeseveralspeciesoutperformstate-of-the-artowingdelivereddemonstratedalsodiscussraisesnewquestionsDeep-learning-readyimagesdevelopmentDatasetDeepSeedling

Similar Articles

Cited By