A value-based topography of climate change beliefs and behaviors.

Farzan Karimi-Malekabadi, Sonya Sachdeva, Morteza Dehghani
Author Information
  1. Farzan Karimi-Malekabadi: Department of Psychology, University of Southern California, 362 S. McClintock Ave, Los Angeles, CA 90089, USA. ORCID
  2. Sonya Sachdeva: USDA Forest Service, Northern Research Station, 1033 University Place, Suite 360, Evanston, IL 60201, USA. ORCID
  3. Morteza Dehghani: Department of Psychology, University of Southern California, 362 S. McClintock Ave, Los Angeles, CA 90089, USA. ORCID

Abstract

While research has documented clear regional differences in environmental attitudes and behaviors, less is understood about the role of shared moral values in shaping these variations. This gap poses a critical challenge to designing effective climate action strategies. Many environmental initiatives rely on "moral framing" to promote proenvironmental behavior, often targeting specific geographical areas like cities or counties. However, these strategies may falter if they fail to account for the unique moral landscapes that shape climate beliefs and actions in different regions. To maximize the success of these interventions, it is crucial to understand how collective moral values influence environmental engagement across diverse communities. Across two studies, we offer insights at the collective level into the moral psychology of climate change by investigating how county-level moral values can predict (i) green attitudes and (ii) household carbon emissions within those counties after accounting for political behavior and region-specific factors. Using Bayesian geospatial modeling, we find that counties that endorse purity and fairness show higher environmental concerns and lower emissions across 3,102 US counties in 48 states. While political orientation strongly predicts environmental attitudes, moral values appear to be a more important factor in predicting carbon footprints. We discuss how county-level dynamics deviate from individual-level dynamics. Our community-level evidence can be leveraged to enhance green interventions on a regional scale by aligning them with the local populace's prevailing values and lived experiences, thus bolstering public support and increasing the likelihood of successful climate action initiatives.

Keywords

References

  1. Psychol Methods. 2020 Aug;25(4):412-429 [PMID: 31647254]
  2. J Pers Soc Psychol. 2021 Aug;121(2):378-393 [PMID: 32597669]
  3. Environ Manage. 2006 Sep;38(3):338-49 [PMID: 16752045]
  4. Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7521-7526 [PMID: 29959208]
  5. J Pers Soc Psychol. 2011 Aug;101(2):366-85 [PMID: 21244182]
  6. Spat Spatiotemporal Epidemiol. 2019 Nov;31:100301 [PMID: 31677766]
  7. J Res Pers. 2018 Feb;72:64-72 [PMID: 32831424]
  8. Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9314-9 [PMID: 23630266]
  9. Am Psychol. 2022 Sep;77(6):743-759 [PMID: 36074569]
  10. J Pers Soc Psychol. 2008 Jul;95(1):212-21 [PMID: 18605861]
  11. Environ Sci Technol. 2014 Jan 21;48(2):895-902 [PMID: 24328208]
  12. Nat Commun. 2021 Jul 28;12(1):4585 [PMID: 34321479]
  13. PLoS One. 2016 Oct 19;11(10):e0163852 [PMID: 27760207]
  14. Eur J Soc Psychol. 2014 Aug;44(5):430-440 [PMID: 25678723]
  15. Perspect Psychol Sci. 2022 Mar;17(2):407-441 [PMID: 34699736]

Word Cloud

Created with Highcharts 10.0.0moralclimateenvironmentalvaluescountiesattitudeschangecounty-levelregionalbehaviorsactionstrategiesinitiativesbehaviorbeliefsinterventionscollectiveacrosscangreencarbonemissionspoliticalmodelingdynamicsresearchdocumentedcleardifferenceslessunderstoodrolesharedshapingvariationsgapposescriticalchallengedesigningeffectiveManyrely"moralframing"promoteproenvironmentaloftentargetingspecificgeographicalareaslikecitiesHowevermayfalterfailaccountuniquelandscapesshapeactionsdifferentregionsmaximizesuccesscrucialunderstandinfluenceengagementdiversecommunitiesAcrosstwostudiesofferinsightslevelpsychologyinvestigatingpredictiihouseholdwithinaccountingregion-specificfactorsUsingBayesiangeospatialfindendorsepurityfairnessshowhigherconcernslower3102US48statesorientationstronglypredictsappearimportantfactorpredictingfootprintsdiscussdeviateindividual-levelcommunity-levelevidenceleveragedenhancescalealigninglocalpopulace'sprevailinglivedexperiencesthusbolsteringpublicsupportincreasinglikelihoodsuccessfulvalue-basedtopographyanalysismoralityspatial

Similar Articles

Cited By