Electrically conductive "SMART" hydrogels for on-demand drug delivery.

Soumajyoti Ghosh, Nikhil Kumar, Santanu Chattopadhyay
Author Information
  1. Soumajyoti Ghosh: Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India.
  2. Nikhil Kumar: Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, India.
  3. Santanu Chattopadhyay: Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India.

Abstract

In the current transformative era of biomedicine, hydrogels have established their presence in biomaterials due to their superior biocompatibility, tuneability and resemblance with native tissue. However, hydrogels typically exhibit poor conductivity due to their hydrophilic polymer structure. Electrical conductivity provides an important enhancement to the properties of hydrogel-based systems in various biomedical applications such as drug delivery and tissue engineering. Consequently, researchers are developing combinatorial strategies to develop electrically responsive "SMART" systems to improve the therapeutic efficacy of biomolecules. Electrically conductive hydrogels have been explored for various drug delivery applications, enabling higher loading of therapeutic cargo with on-demand delivery. This review emphasizes the properties, mechanisms, fabrication techniques and recent advancements of electrically responsive "SMART" systems aiding on-site drug delivery applications. Additionally, it covers prospects for the successful translation of these systems into clinical research.

Keywords

References

  1. Adv Healthc Mater. 2024 Jan;13(3):e2301759 [PMID: 37861058]
  2. Acta Biomater. 2022 Feb;139:4-21 [PMID: 33894350]
  3. Sci Rep. 2020 Feb 6;10(1):2027 [PMID: 32029808]
  4. Small. 2022 Nov;18(47):e2203258 [PMID: 36216591]
  5. ACS Appl Mater Interfaces. 2022 Jul 6;14(26):30385-30397 [PMID: 35737578]
  6. ACS Appl Mater Interfaces. 2020 Jun 3;12(22):25334-25344 [PMID: 32422039]
  7. Nat Rev Drug Discov. 2021 Feb;20(2):101-124 [PMID: 33277608]
  8. Adv Drug Deliv Rev. 2002 Jan 17;54(1):3-12 [PMID: 11755703]
  9. Adv Healthc Mater. 2016 Jan 7;5(1):80-7 [PMID: 25989744]
  10. Bioact Mater. 2022 May 02;19:458-473 [PMID: 35574061]
  11. Drug Des Devel Ther. 2017 Jun 15;11:1737-1752 [PMID: 28670109]
  12. Ultrason Sonochem. 2018 Apr;42:212-227 [PMID: 29429663]
  13. Signal Transduct Target Ther. 2021 Feb 15;6(1):63 [PMID: 33589586]
  14. Int J Pharm. 2009 Apr 17;371(1-2):126-33 [PMID: 19162150]
  15. Adv Mater. 2022 Feb;34(5):e2107315 [PMID: 34716729]
  16. Langmuir. 2010 Apr 6;26(7):4607-12 [PMID: 20199077]
  17. J Mater Chem B. 2013;1(14):1878-1884 [PMID: 23730504]
  18. ACS Nano. 2021 Aug 24;15(8):12687-12722 [PMID: 34374515]
  19. ACS Nano. 2022 Feb 22;16(2):3194-3207 [PMID: 35099927]
  20. Int J Biol Macromol. 2022 Dec 1;222(Pt B):2744-2760 [PMID: 36243158]
  21. Science. 2017 May 5;356(6337): [PMID: 28473537]
  22. Macromol Biosci. 2021 Jan;21(1):e2000252 [PMID: 32881309]
  23. Adv Healthc Mater. 2019 May;8(10):e1801488 [PMID: 30835957]
  24. Eur J Pharm Sci. 2020 Aug 1;151:105410 [PMID: 32505795]
  25. Pharm Weekbl Sci. 1986 Jun 20;8(3):165-89 [PMID: 3526277]
  26. Int J Biol Macromol. 2019 Sep 1;136:704-728 [PMID: 31028807]
  27. Adv Mater. 2020 Jan;32(1):e1904752 [PMID: 31657081]
  28. Adv Sci (Weinh). 2019 May 24;6(15):1802077 [PMID: 31406658]
  29. ACS Appl Mater Interfaces. 2017 Aug 30;9(34):28305-28318 [PMID: 28771308]
  30. J Control Release. 2022 Mar;343:482-491 [PMID: 35134461]
  31. Nat Commun. 2022 May 31;13(1):3019 [PMID: 35641519]
  32. ACS Nano. 2019 Jan 22;13(1):163-175 [PMID: 30588802]
  33. Soft Matter. 2020 Feb 12;16(6):1404-1454 [PMID: 31984400]
  34. Angew Chem Int Ed Engl. 2020 Feb 10;59(7):2720-2724 [PMID: 31917502]
  35. Nanoscale. 2017 Feb 2;9(5):2038-2050 [PMID: 28112762]
  36. ACS Appl Mater Interfaces. 2018 Oct 24;10(42):36218-36228 [PMID: 30251533]
  37. Nat Rev Mater. 2016 Dec;1(12): [PMID: 29657852]
  38. ACS Appl Mater Interfaces. 2022 Sep 7;14(35):40344-40350 [PMID: 36017981]
  39. ACS Appl Mater Interfaces. 2016 Oct 19;8(41):28055-28067 [PMID: 27689537]
  40. ACS Biomater Sci Eng. 2017 Aug 14;3(8):1641-1653 [PMID: 29147682]
  41. Nanoscale. 2020 Jun 28;12(24):12753-12759 [PMID: 32520067]
  42. J Control Release. 2020 Dec 10;328:192-209 [PMID: 32877745]
  43. Mater Sci Eng C Mater Biol Appl. 2015 Dec 1;57:414-33 [PMID: 26354282]
  44. ACS Biomater Sci Eng. 2020 Nov 9;6(11):6228-6240 [PMID: 33449669]
  45. ACS Appl Mater Interfaces. 2020 Nov 25;12(47):53247-53256 [PMID: 33185423]
  46. Adv Healthc Mater. 2020 Jan;9(2):e1901396 [PMID: 31846228]
  47. J Control Release. 2010 Aug 17;146(1):6-15 [PMID: 20359512]
  48. Acta Biomater. 2022 Jan 1;137:124-135 [PMID: 34644612]
  49. Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:958-971 [PMID: 28629101]
  50. Acta Biomater. 2018 May;72:55-69 [PMID: 29555459]
  51. Biomater Res. 2016 Sep 29;20:31 [PMID: 27708859]
  52. J Appl Biomater Biomech. 2007 Sep-Dec;5(3):125-39 [PMID: 20799182]
  53. Biomaterials. 2017 Apr;122:34-47 [PMID: 28107663]
  54. Int J Biol Macromol. 2023 Mar 15;231:123297 [PMID: 36646353]
  55. Soft Matter. 2014 Feb 7;10(5):672-87 [PMID: 24834901]
  56. Biotechnol Bioeng. 2014 Mar;111(3):441-53 [PMID: 24264728]
  57. ACS Nano. 2014 May 27;8(5):4348-57 [PMID: 24738911]
  58. Skin Res Technol. 2018 May;24(2):165-174 [PMID: 29057509]
  59. ACS Appl Mater Interfaces. 2017 Dec 20;9(50):44124-44133 [PMID: 29172417]
  60. ACS Appl Mater Interfaces. 2020 Jan 15;12(2):2039-2048 [PMID: 31859471]
  61. Chem Soc Rev. 2019 Mar 18;48(6):1642-1667 [PMID: 30474663]
  62. Artif Cells Nanomed Biotechnol. 2017 Mar;45(2):185-192 [PMID: 26923861]
  63. ACS Biomater Sci Eng. 2018 May 14;4(5):1558-1567 [PMID: 33445313]
  64. Acta Biomater. 2017 Aug;58:365-375 [PMID: 28578108]
  65. Sci Adv. 2022 Apr 15;8(15):eabm9608 [PMID: 35417235]
  66. Sci Adv. 2021 Feb 12;7(7): [PMID: 33579709]
  67. Nano Lett. 2022 Jan 26;22(2):740-750 [PMID: 35019663]
  68. RSC Adv. 2018 Mar 19;8(20):10806-10817 [PMID: 35541536]
  69. Acta Biomater. 2015 Oct;26:236-48 [PMID: 26272777]
  70. Acta Biomater. 2023 Mar 1;158:87-100 [PMID: 36640949]
  71. Acta Biomater. 2016 Jul 15;39:25-33 [PMID: 27163406]
  72. ACS Appl Mater Interfaces. 2022 Jul 20;14(28):31645-31654 [PMID: 35790212]
  73. Mol Pharm. 2020 Feb 3;17(2):373-391 [PMID: 31877054]
  74. J Biomed Mater Res A. 2004 Dec 15;71(4):577-85 [PMID: 15514937]
  75. Acta Biomater. 2014 Mar;10(3):1216-26 [PMID: 24365707]
  76. Sci Rep. 2015 Jan 05;5:7618 [PMID: 25557092]
  77. Adv Drug Deliv Rev. 2018 Apr;129:148-168 [PMID: 29262296]
  78. Biomacromolecules. 2021 Mar 8;22(3):1273-1281 [PMID: 33596651]
  79. Acta Biomater. 2016 Mar;33:122-30 [PMID: 26821341]
  80. Acta Biomater. 2020 Jan 1;101:1-13 [PMID: 31476385]
  81. Gels. 2023 May 01;9(5): [PMID: 37232965]
  82. Acta Biomater. 2014 Jun;10(6):2341-53 [PMID: 24556448]
  83. Adv Sci (Weinh). 2021 Apr 10;8(12):2003995 [PMID: 34194928]
  84. Sci Technol Adv Mater. 2010 Mar 18;11(1):014107 [PMID: 27877322]
  85. Adv Sci (Weinh). 2015 Dec 02;3(2):1500305 [PMID: 27774392]
  86. ACS Appl Mater Interfaces. 2021 Jan 20;13(2):2952-2960 [PMID: 33411490]
  87. ACS Nano. 2018 Nov 27;12(11):10957-10967 [PMID: 30285411]
  88. Int J Biol Macromol. 2017 Oct;103:889-901 [PMID: 28552728]
  89. Research (Wash D C). 2022 Aug 14;2022:9867378 [PMID: 36072274]
  90. Pharmaceutics. 2023 Apr 10;15(4): [PMID: 37111689]
  91. Int J Biol Macromol. 2021 Jul 31;183:2142-2151 [PMID: 34048838]
  92. J Mater Chem B. 2015 Nov 21;3(43):8459-8468 [PMID: 32262685]
  93. Biomacromolecules. 2009 Jan 12;10(1):9-18 [PMID: 19032110]
  94. Eur J Pharm Sci. 2018 Jan 15;112:20-27 [PMID: 29109022]
  95. Biomaterials. 2016 Dec;111:149-162 [PMID: 27728814]
  96. ACS Appl Mater Interfaces. 2018 Apr 25;10(16):14045-14054 [PMID: 29608268]
  97. J Control Release. 2012 Feb 28;158(1):93-101 [PMID: 22063007]
  98. ACS Appl Mater Interfaces. 2019 Feb 27;11(8):7715-7724 [PMID: 30714715]
  99. Adv Healthc Mater. 2016 Jan 7;5(1):175-84 [PMID: 26501166]
  100. J Mater Chem B. 2015 Jan 21;3(3):481-490 [PMID: 32262051]
  101. Macromol Rapid Commun. 2022 Aug;43(15):e2200075 [PMID: 35436378]
  102. Sci Rep. 2017 Jan 30;7:41566 [PMID: 28134283]
  103. ACS Macro Lett. 2014 Jul 15;3(7):693-697 [PMID: 35590770]
  104. Mater Horiz. 2023 Jul 31;10(8):2800-2823 [PMID: 37204005]
  105. ACS Appl Mater Interfaces. 2023 Apr 26;15(16):20346-20357 [PMID: 37043771]
  106. Int J Pharm. 2011 Jan 17;403(1-2):57-65 [PMID: 20970487]

Word Cloud

Created with Highcharts 10.0.0deliveryhydrogelsdrugsystemsapplications"SMART"Electricallyconductiveduetissueconductivitypropertiesvariouselectricallyresponsivetherapeuticon-demandcurrenttransformativeerabiomedicineestablishedpresencebiomaterialssuperiorbiocompatibilitytuneabilityresemblancenativeHowevertypicallyexhibitpoorhydrophilicpolymerstructureElectricalprovidesimportantenhancementhydrogel-basedbiomedicalengineeringConsequentlyresearchersdevelopingcombinatorialstrategiesdevelopimproveefficacybiomoleculesexploredenablinghigherloadingcargoreviewemphasizesmechanismsfabricationtechniquesrecentadvancementsaidingon-siteAdditionallycoversprospectssuccessfultranslationclinicalresearchConductivepolymersHydrogelsOn-demand

Similar Articles

Cited By