Identifying Dietary Triggers Among Individuals with Overweight and Obesity: An Ecological Momentary Assessment Study.

Han Shi Jocelyn Chew, Rakhi Vashishtha, Ruochen Du, Yan Xin Liaw, Ayelet Gneezy
Author Information
  1. Han Shi Jocelyn Chew: Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore. ORCID
  2. Rakhi Vashishtha: Behaviour and Implementation Science Interventions, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore. ORCID
  3. Ruochen Du: Biostatistics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
  4. Yan Xin Liaw: Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
  5. Ayelet Gneezy: Behaviour and Implementation Science Interventions, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore. ORCID

Abstract

BACKGROUND/OBJECTIVES: Excess adiposity, affecting 43% of the global adult population, is a major contributor to cardiometabolic diseases. Lifestyle behaviours, specifically dietary habits, play a key role in weight management. Real-time assessment methods such as Ecological Momentary Assessment (EMA) provide context-rich data that reduce recall bias and offer insights into dietary triggers and lapses. This study examines dietary triggers among adults with excess adiposity in Singapore using EMA, focusing on factors influencing dietary adherence and lapses.
METHODS: A total of 250 participants with a BMI ≥ 23 kg/m were recruited to track dietary habits for one week, at least three times a day, using the Eating Behaviour Lapse Inventory Survey Singapore (eBLISS) embedded within the Eating Trigger Response Inhibition Program (eTRIP© V.1) smartphone app. Logistic regression analysis was used to identify predictors of dietary adherence.
RESULTS: Of the 4708 responses, 76.4% of the responses were indicative of adherence to dietary plans. Non-adherence was primarily associated with food accessibility and negative emotions (stress, nervousness, and sadness). Factors such as meals prepared by domestic helpers and self-preparation were significantly associated with adherence. Negative emotions and premenstrual syndrome were identified as significant predictors of dietary lapses.
CONCLUSIONS: EMA offers valuable insights into dietary behaviours by identifying real-time triggers for dietary lapses. Future interventions can utilise technology-driven approaches to predict and prevent lapses, potentially improving adherence and weight management outcomes.

Keywords

References

  1. Epidemiol Health. 2014 Jul 22;36:e2014009 [PMID: 25078382]
  2. J Behav Med. 2022 Apr;45(2):324-330 [PMID: 34807334]
  3. Int J Obes. 1989;13(2):223-34 [PMID: 2744934]
  4. Int J Behav Nutr Phys Act. 2017 Aug 17;14(1):109 [PMID: 28818089]
  5. JMIR Mhealth Uhealth. 2020 Jan 7;8(1):e13191 [PMID: 31909719]
  6. Appetite. 2024 May 1;196:107241 [PMID: 38307297]
  7. J Hum Nutr Diet. 2019 Dec;32(6):765-774 [PMID: 31430000]
  8. Obesity (Silver Spring). 2011 Aug;19(8):1574-9 [PMID: 21273995]
  9. Appetite. 2018 Oct 1;129:198-206 [PMID: 29981361]
  10. Ann Behav Med. 2014 Dec;48(3):300-10 [PMID: 24562984]
  11. J Behav Med. 2023 Jun;46(3):532-539 [PMID: 36342563]
  12. Behav Sci (Basel). 2017 Jul 11;7(3): [PMID: 28696389]
  13. Nutrients. 2022 Feb 23;14(5): [PMID: 35267916]
  14. Br J Nutr. 2001 Apr;85(4):475-82 [PMID: 11348562]
  15. Sensors (Basel). 2020 May 11;20(9): [PMID: 32403349]
  16. Psychosom Med. 2014 Nov-Dec;76(9):747-52 [PMID: 25373891]
  17. Ann Behav Med. 2017 Oct;51(5):741-753 [PMID: 28281136]
  18. JMIR Mhealth Uhealth. 2018 Nov 20;6(11):e11170 [PMID: 30459148]
  19. Appetite. 2017 Apr 1;111:32-37 [PMID: 28011003]
  20. Appetite. 2023 Apr 1;183:106476 [PMID: 36720369]
  21. Obes Res. 2003 Oct;11 Suppl:44S-59S [PMID: 14569037]
  22. Eur Eat Disord Rev. 2022 Jul;30(4):304-327 [PMID: 35460323]
  23. Obesity (Silver Spring). 2020 Nov;28(11):2020-2027 [PMID: 32808484]
  24. Front Psychol. 2017 Feb 15;8:209 [PMID: 28261140]
  25. Public Health Nutr. 2022 Sep;25(9):2426-2435 [PMID: 35190011]
  26. Curr Nutr Rep. 2024 Sep;13(3):455-477 [PMID: 38806863]
  27. Singapore Med J. 2016 Jun;57(6):292-300 [PMID: 27353244]
  28. Am J Cardiol. 2022 Jan 1;162:66-72 [PMID: 34702552]
  29. J Consult Clin Psychol. 2004 Apr;72(2):341-8 [PMID: 15065966]
  30. F1000Res. 2017 Jun 16;6:926 [PMID: 28690835]
  31. Appetite. 2013 Aug;67:61-73 [PMID: 23583312]
  32. Health Psychol Rev. 2014;8(3):319-38 [PMID: 25053217]
  33. J Med Internet Res. 2024 May 7;26:e46036 [PMID: 38713909]
  34. Crit Rev Food Sci Nutr. 2014;54(9):1103-16 [PMID: 24499144]
  35. Metabolism. 2019 Mar;92:147-152 [PMID: 30529454]
  36. Appetite. 2024 Oct 1;201:107583 [PMID: 38944056]
  37. Eat Behav. 2001 Winter;2(4):307-21 [PMID: 15001025]
  38. Eat Disord. 2021 Jan-Feb;29(1):42-55 [PMID: 31081472]
  39. Sci Rep. 2022 Feb 10;12(1):2262 [PMID: 35145141]
  40. J Obes Metab Syndr. 2021 Mar 30;30(1):20-31 [PMID: 33107442]
  41. Am J Health Promot. 2018 Jan;32(1):75-83 [PMID: 27574335]
  42. Appetite. 2001 Apr;36(2):111-8 [PMID: 11237346]
  43. Annu Rev Clin Psychol. 2008;4:1-32 [PMID: 18509902]

Grants

  1. na/National University of Singapore

MeSH Term

Humans
Female
Ecological Momentary Assessment
Male
Adult
Obesity
Middle Aged
Feeding Behavior
Overweight
Singapore
Diet
Body Mass Index

Word Cloud

Created with Highcharts 10.0.0dietaryadherencelapsestriggersadiposityweightmanagementEMAbehaviourshabitsassessmentEcologicalMomentaryAssessmentdatainsightsexcessSingaporeusingEatingpredictorsresponsesassociatedemotionsreal-timeBACKGROUND/OBJECTIVES:Excessaffecting43%globaladultpopulationmajorcontributorcardiometabolicdiseasesLifestylespecificallyplaykeyroleReal-timemethodsprovidecontext-richreducerecallbiasofferstudyexaminesamongadultsfocusingfactorsinfluencingMETHODS:total250participantsBMI23kg/mrecruitedtrackoneweekleastthreetimesdayBehaviourLapseInventorySurveyeBLISSembeddedwithinTriggerResponseInhibitionProgrameTRIP©V1smartphoneappLogisticregressionanalysisusedidentifyRESULTS:4708764%indicativeplansNon-adherenceprimarilyfoodaccessibilitynegativestressnervousnesssadnessFactorsmealsprepareddomestichelpersself-preparationsignificantlyNegativepremenstrualsyndromeidentifiedsignificantCONCLUSIONS:offersvaluableidentifyingFutureinterventionscanutilisetechnology-drivenapproachespredictpreventpotentiallyimprovingoutcomesIdentifyingDietaryTriggersAmongIndividualsOverweightObesity:Studyecologicalmomentarycollection

Similar Articles

Cited By