DynHeter-DTA: Dynamic Heterogeneous Graph Representation for Drug-Target Binding Affinity Prediction.

Changli Li, Guangyue Li
Author Information
  1. Changli Li: School of Artificial Intelligence, Nanjing University of Information Science & Technology, Nanjing 210044, China.
  2. Guangyue Li: School of Artificial Intelligence, Nanjing University of Information Science & Technology, Nanjing 210044, China.

Abstract

In drug development, drug-target affinity (DTA) prediction is a key indicator for assessing the drug's efficacy and safety. Despite significant progress in deep learning-based affinity prediction approaches in recent years, there are still limitations in capturing the complex interactions between drugs and target receptors. To address this issue, a dynamic heterogeneous graph prediction model, DynHeter-DTA, is proposed in this paper, which fully leverages the complex relationships between drug-drug, protein-protein, and drug-protein interactions, allowing the model to adaptively learn the optimal graph structures. Specifically, (1) in the data processing layer, to better utilize the similarities and interactions between drugs and proteins, the model dynamically adjusts the connection strengths between drug-drug, protein-protein, and drug-protein pairs, constructing a variable heterogeneous graph structure, which significantly improves the model's expressive power and generalization performance; (2) in the model design layer, considering that the quantity of protein nodes significantly exceeds that of drug nodes, an approach leveraging Graph Isomorphism Networks (GIN) and Self-Attention Graph Pooling (SAGPooling) is proposed to enhance prediction efficiency and accuracy. Comprehensive experiments on the Davis, KIBA, and Human public datasets demonstrate that DynHeter-DTA exceeds the performance of previous models in drug-target interaction forecasting, providing an innovative solution for drug-target affinity prediction.

Keywords

References

  1. IEEE J Biomed Health Inform. 2023 Apr;27(4):2128-2137 [PMID: 37018115]
  2. Mol Inform. 2016 Jan;35(1):3-14 [PMID: 27491648]
  3. Bioinformatics. 2021 May 23;37(8):1140-1147 [PMID: 33119053]
  4. Bioinformatics. 2015 Jun 15;31(12):i221-9 [PMID: 26072486]
  5. RSC Adv. 2020 Jun 1;10(35):20701-20712 [PMID: 35517730]
  6. IEEE/ACM Trans Comput Biol Bioinform. 2022 Mar-Apr;19(2):718-728 [PMID: 34197324]
  7. J Cheminform. 2017 Apr 18;9(1):24 [PMID: 29086119]
  8. Nat Rev Drug Discov. 2010 Mar;9(3):203-14 [PMID: 20168317]
  9. Drug Discov Today. 2021 Jun;26(6):1382-1393 [PMID: 33609779]
  10. Nat Biotechnol. 2011 Oct 30;29(11):1046-51 [PMID: 22037378]
  11. Expert Opin Drug Discov. 2019 Aug;14(8):755-768 [PMID: 31146609]
  12. Bioinformatics. 2023 Jun 1;39(6): [PMID: 37252835]
  13. Science. 2015 Jul 17;349(6245):255-60 [PMID: 26185243]
  14. BMC Genomics. 2022 Jun 17;23(1):449 [PMID: 35715739]
  15. Bioinformatics. 2018 Sep 1;34(17):i821-i829 [PMID: 30423097]
  16. Environ Sci Technol. 2023 Nov 21;57(46):18193-18202 [PMID: 37406199]
  17. Neuron. 2018 Sep 19;99(6):1129-1143 [PMID: 30236283]
  18. Drug Discov Today. 2019 Oct;24(10):2017-2032 [PMID: 31377227]
  19. Chem Sci. 2022 Jan 5;13(3):816-833 [PMID: 35173947]
  20. Future Med Chem. 2020 May;12(10):939-947 [PMID: 32270704]
  21. Comput Biol Med. 2023 Sep;163:107136 [PMID: 37329615]
  22. Comput Soc Netw. 2019;6(1):11 [PMID: 37915858]
  23. Comput Biol Chem. 2023 Oct;106:107935 [PMID: 37536230]
  24. J Cheminform. 2020 Sep 1;12(1):51 [PMID: 33431044]
  25. J Chem Inf Model. 2014 Mar 24;54(3):735-43 [PMID: 24521231]
  26. J Cheminform. 2018 Oct 4;10(1):48 [PMID: 30288626]
  27. Comput Biol Chem. 2021 Jun;92:107476 [PMID: 33799080]
  28. IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):657-668 [PMID: 35201983]
  29. Int J Biol Sci. 2018 Jul 13;14(10):1232-1244 [PMID: 30123072]
  30. Curr Opin Struct Biol. 2022 Apr;73:102327 [PMID: 35074533]
  31. Bioinformatics. 2020 Aug 15;36(16):4406-4414 [PMID: 32428219]
  32. Comput Biol Med. 2022 Nov;150:106145 [PMID: 37859276]
  33. BMC Bioinformatics. 2016 Jan 22;17:46 [PMID: 26801218]

MeSH Term

Humans
Protein Binding
Proteins
Deep Learning
Pharmaceutical Preparations
Algorithms
Drug Development

Chemicals

Proteins
Pharmaceutical Preparations

Word Cloud

Created with Highcharts 10.0.0predictiongraphdrug-targetmodelaffinityinteractionsheterogeneousGraphdrugcomplexdrugsDynHeter-DTAproposeddrug-drugprotein-proteindrug-proteinlayersignificantlyperformancenodesexceedsdevelopmentDTAkeyindicatorassessingdrug'sefficacysafetyDespitesignificantprogressdeeplearning-basedapproachesrecentyearsstilllimitationscapturingtargetreceptorsaddressissuedynamicpaperfullyleveragesrelationshipsallowingadaptivelylearnoptimalstructuresSpecifically1dataprocessingbetterutilizesimilaritiesproteinsdynamicallyadjustsconnectionstrengthspairsconstructingvariablestructureimprovesmodel'sexpressivepowergeneralization2designconsideringquantityproteinapproachleveragingIsomorphismNetworksGINSelf-AttentionPoolingSAGPoolingenhanceefficiencyaccuracyComprehensiveexperimentsDavisKIBAHumanpublicdatasetsdemonstratepreviousmodelsinteractionforecastingprovidinginnovativesolutionDynHeter-DTA:DynamicHeterogeneousRepresentationDrug-TargetBindingAffinityPredictionbindingneuralnetworksrepresentationlearning

Similar Articles

Cited By

No available data.