Body Composition Analysis in Metastatic Non-Small-Cell Lung Cancer: Depicting Sarcopenia in Portuguese Tertiary Care.

José Leão Mendes, Rita Quaresma Ferreira, Inês Mata, João Vasco Barreira, Ysel Chiara Rodrigues, David Silva Dias, Manuel Luís Capelas, Antti Mäkitie, Inês Guerreiro, Nuno M Pimenta, Paula Ravasco
Author Information
  1. José Leão Mendes: Medical Oncology Department, Unidade Local de Saúde São José, 1169-050 Lisbon, Portugal. ORCID
  2. Rita Quaresma Ferreira: Medical Oncology Department, Unidade Local de Saúde São José, 1169-050 Lisbon, Portugal.
  3. Inês Mata: Centro Clínico Académico de Lisboa, 1169-056 Lisbon, Portugal.
  4. João Vasco Barreira: Medical Oncology Department, CUF Oncologia, 1998-018 Lisbon, Portugal. ORCID
  5. Ysel Chiara Rodrigues: Medical Oncology Department, Fundação Champalimaud, 1400-038 Lisbon, Portugal.
  6. David Silva Dias: Center for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal. ORCID
  7. Manuel Luís Capelas: Center for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal. ORCID
  8. Antti Mäkitie: Center for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal. ORCID
  9. Inês Guerreiro: Medical Oncology Department, Unidade Local de Saúde São José, 1169-050 Lisbon, Portugal. ORCID
  10. Nuno M Pimenta: Center for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal. ORCID
  11. Paula Ravasco: Center for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal. ORCID

Abstract

: Sarcopenia is an emergent prognostic biomarker in clinical oncology. Albeit increasingly defined through skeletal muscle index (SMI) thresholding, the literature cut-offs fail to discern heterogeneous baseline muscularity across populations. This study assesses the prognostic impact of using cohort-specific SMI thresholds in a Portuguese metastatic non-small-cell lung cancer (mNSCLC) cohort. : Retrospective study including mNSCLC patients treated between January 2017 and December 2022. ImageJ v1.54 g was used to assess cross-sectional CT imaging at the third lumbar vertebra (L3) and calculate L3SMI. Sarcopenia was defined both according to Prado et al. and L3SMI thresholds derived from receiver operating characteristic analysis. Overall survival (OS) was the primary endpoint. Secondary endpoints included first-line (1L) progression-free survival (PFS) and sarcopenia subgroup analysis regarding body mass index impact on OS. : The initial cohort included 197 patients. Mean age was 65 years (±11.31). Most tumors were adenocarcinomas ( = 165) and presented with metastasis ( = 154). SMI was evaluable in 184 patients: cohort-specific thresholds (<49.96 cm/m for men; <34.02 cm/m for women) yielded 46.74% sarcopenic patients ( = 86) versus 66.30% ( = 122) per the literature definition. Cohort-specific thresholds predicted both OS (12.75 versus 21.13 months, hazard ratio [HR] 1.654, = 0.002) and PFS (7.92 versus 9.56 months, HR 1.503, = 0.01). Among sarcopenic patients, overweight (HR 0.417, = 0.01) and obesity (HR 2.723, = 0.039) had contrasting impacts on OS. : Amid reclassification of nearly one-fifth of the cohort, cohort-specific thresholds improved sarcopenia prognostication in mNSCLC. Homogeneity regarding both cancer treatment setting and ethnicity could be key to defining sarcopenia based on SMI.

Keywords

References

  1. Cancers (Basel). 2023 Jan 27;15(3): [PMID: 36765748]
  2. Chest. 2019 Jul;156(1):101-111 [PMID: 31128115]
  3. Nat Rev Clin Oncol. 2023 Sep;20(9):624-639 [PMID: 37479810]
  4. Age Ageing. 2019 Jan 1;48(1):16-31 [PMID: 30312372]
  5. Acta Oncol. 2015 Mar;54(3):340-8 [PMID: 25225010]
  6. Lancet. 2021 Aug 7;398(10299):535-554 [PMID: 34273294]
  7. Ann Oncol. 2023 Apr;34(4):339-357 [PMID: 36872130]
  8. J Clin Oncol. 2013 Apr 20;31(12):1539-47 [PMID: 23530101]
  9. Front Nutr. 2022 Jan 27;8:671547 [PMID: 35155507]
  10. Cancers (Basel). 2023 Feb 08;15(4): [PMID: 36831431]
  11. Thorac Cancer. 2023 Sep;14(25):2548-2557 [PMID: 37525557]
  12. JAMA Oncol. 2016 Sep 1;2(9):1137-45 [PMID: 27196302]
  13. Bosn J Basic Med Sci. 2022 Oct 23;22(6):982-991 [PMID: 35575465]
  14. Lancet Oncol. 2008 Jul;9(7):629-35 [PMID: 18539529]
  15. Curr Opin Support Palliat Care. 2011 Dec;5(4):342-9 [PMID: 21986910]
  16. Lancet Oncol. 2011 May;12(5):489-95 [PMID: 21296615]
  17. Lung Cancer. 2016 Nov;101:92-97 [PMID: 27794415]
  18. Support Care Cancer. 2015 Jun;23(6):1699-708 [PMID: 25430482]
  19. CA Cancer J Clin. 2024 May-Jun;74(3):229-263 [PMID: 38572751]
  20. Anticancer Res. 2016 Jun;36(6):3029-34 [PMID: 27272822]
  21. Cancers (Basel). 2023 Nov 26;15(23): [PMID: 38067294]
  22. Br J Nutr. 2020 Nov 28;124(10):1102-1113 [PMID: 32616084]
  23. Future Oncol. 2018 Apr;14(10):919-926 [PMID: 29528255]
  24. JAMA Oncol. 2023 Dec 1;9(12):1727-1728 [PMID: 37824139]
  25. Heliyon. 2024 Mar 03;10(5):e27282 [PMID: 38463845]
  26. Ann Oncol. 2023 Apr;34(4):358-376 [PMID: 36669645]
  27. Anticancer Res. 2017 Dec;37(12):6997-7003 [PMID: 29187486]
  28. Medicine (Baltimore). 2016 Mar;95(13):e3164 [PMID: 27043677]
  29. Support Care Cancer. 2016 Nov;24(11):4495-502 [PMID: 27236439]
  30. J Clin Med. 2024 Mar 11;13(6): [PMID: 38541827]
  31. Clin Nutr ESPEN. 2021 Jun;43:64-75 [PMID: 34024567]
  32. Ann Oncol. 2018 Feb;29 Suppl 2:ii1-ii9 [PMID: 32169202]
  33. Front Oncol. 2022 Sep 23;12:986236 [PMID: 36212442]
  34. Lancet. 2023 Feb 4;401(10374):390-408 [PMID: 36563698]
  35. Breathe (Sheff). 2024 Aug 27;20(2):230190 [PMID: 39193459]
  36. Obesity (Silver Spring). 2007 Feb;15(2):370-6 [PMID: 17299110]
  37. Scand J Surg. 2018 Sep;107(3):244-251 [PMID: 29284364]
  38. Ann Transl Med. 2021 Dec;9(24):1801 [PMID: 35071495]
  39. Int J Mol Sci. 2022 Apr 22;23(9): [PMID: 35563026]

Word Cloud

Created with Highcharts 10.0.0=thresholds0:SMIpatientsOSsarcopeniaSarcopeniaindexcohort-specificmNSCLCcohortversusHRprognosticdefinedskeletalmuscleliteraturestudyimpactPortuguesenon-small-celllungcancerL3SMIanalysissurvivalincludedPFSregardingbodycm/msarcopenicmonths101emergentbiomarkerclinicaloncologyAlbeitincreasinglythresholdingcut-offsfaildiscernheterogeneousbaselinemuscularityacrosspopulationsassessesusingmetastaticRetrospectiveincludingtreatedJanuary2017December2022ImageJv154gusedassesscross-sectionalCTimagingthirdlumbarvertebraL3calculateaccordingPradoetalderivedreceiveroperatingcharacteristicOverallprimaryendpointSecondaryendpointsfirst-line1Lprogression-freesubgroupmassinitial197Meanage65years±1131tumorsadenocarcinomas165presentedmetastasis154evaluable184patients:<4996men<3402womenyielded4674%866630%122perdefinitionCohort-specificpredicted12752113hazardratio[HR]654002792956503Amongoverweight417obesity2723039contrastingimpactsAmidreclassificationnearlyone-fifthimprovedprognosticationHomogeneitytreatmentsettingethnicitykeydefiningbasedBodyCompositionAnalysisMetastaticNon-Small-CellLungCancer:DepictingTertiaryCarecompositioncarcinomaprognosis

Similar Articles

Cited By

No available data.