Multiscale Mathematical Modeling in Systems Biology: A Framework to Boost Plant Synthetic Biology.

Abel Lucido, Oriol Basallo, Alberto Marin-Sanguino, Abderrahmane Eleiwa, Emilce Soledad Martinez, Ester Vilaprinyo, Albert Sorribas, Rui Alves
Author Information
  1. Abel Lucido: Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, 25008 Lleida, Spain.
  2. Oriol Basallo: Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, 25008 Lleida, Spain.
  3. Alberto Marin-Sanguino: Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, 25008 Lleida, Spain. ORCID
  4. Abderrahmane Eleiwa: Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, 25008 Lleida, Spain. ORCID
  5. Emilce Soledad Martinez: Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, 25008 Lleida, Spain.
  6. Ester Vilaprinyo: Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, 25008 Lleida, Spain. ORCID
  7. Albert Sorribas: Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, 25008 Lleida, Spain.
  8. Rui Alves: Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, 25008 Lleida, Spain. ORCID

Abstract

Global food insecurity and environmental degradation highlight the urgent need for more sustainable agricultural solutions. Plant synthetic biology emerges as a promising yet risky avenue to develop such solutions. While synthetic biology offers the potential for enhanced crop traits, it also entails risks of extensive environmental damage. This review highlights the complexities and risks associated with plant synthetic biology, while presenting the potential of multiscale mathematical modeling to assess and mitigate those risks effectively. Despite its potential, applying multiscale mathematical models in plants remains underutilized. Here, we advocate for integrating technological advancements in agricultural data analysis to develop a comprehensive understanding of crops across biological scales. By reviewing common modeling approaches and methodologies applicable to plants, the paper establishes a foundation for creating and utilizing integrated multiscale mathematical models. Through modeling techniques such as parameter estimation, bifurcation analysis, and sensitivity analysis, researchers can identify mutational targets and anticipate pleiotropic effects, thereby enhancing the safety of genetically engineered species. To demonstrate the potential of this approach, ongoing efforts are highlighted to develop an integrated multiscale mathematical model for maize ( L.), engineered through synthetic biology to enhance resilience against ( spp.) and drought.

Keywords

References

  1. Biotechnol J. 2013 May;8(5):581-94 [PMID: 23460591]
  2. Ann Bot. 2004 May;93(5):591-602 [PMID: 15056562]
  3. Annu Rev Biophys Biomol Struct. 2007;36:1-19 [PMID: 17243895]
  4. Ann Bot. 2008 May;101(8):1125-38 [PMID: 17766310]
  5. PLoS One. 2013 Jul 26;8(7):e68960 [PMID: 23922672]
  6. PLoS One. 2015 Jul 08;10(7):e0127905 [PMID: 26154262]
  7. Ann Bot. 2011 Oct;108(6):1085-96 [PMID: 21685431]
  8. RSC Adv. 2022 Sep 7;12(39):25528-25548 [PMID: 36199351]
  9. Mol Syst Biol. 2009;5:271 [PMID: 19455135]
  10. Plants (Basel). 2015 Jun 15;4(2):334-55 [PMID: 27135332]
  11. Front Plant Sci. 2016 Nov 22;7:1734 [PMID: 27920786]
  12. J Theor Biol. 1988 Nov 21;135(2):175-201 [PMID: 3267767]
  13. J Exp Bot. 2023 Jul 18;74(13):3791-3805 [PMID: 37204924]
  14. Biosystems. 2023 Mar;225:104845 [PMID: 36764382]
  15. J Math Biol. 2001 Apr;42(4):347-60 [PMID: 11374124]
  16. Breed Sci. 2019 Sep;69(3):508-513 [PMID: 31598085]
  17. Cell. 2012 Jul 20;150(2):389-401 [PMID: 22817898]
  18. Front Bioeng Biotechnol. 2015 Sep 07;3:135 [PMID: 26442249]
  19. Front Plant Sci. 2022 Jun 23;13:893095 [PMID: 35812979]
  20. Plant Methods. 2021 Dec 4;17(1):123 [PMID: 34863243]
  21. Plant Physiol. 2022 Mar 4;188(3):1450-1468 [PMID: 34668550]
  22. Ann Bot. 2020 Sep 14;126(4):745-763 [PMID: 32391865]
  23. Front Plant Sci. 2024 Jan 11;14:1329556 [PMID: 38273953]
  24. Front Sustain Food Syst. 2021 Feb 22;5:644559 [PMID: 34212131]
  25. Essays Biochem. 2016 Oct 31;60(3):255-273 [PMID: 27784776]
  26. J Theor Biol. 2004 May 21;228(2):173-84 [PMID: 15094013]
  27. Front Plant Sci. 2023 Jul 03;14:1133299 [PMID: 37465386]
  28. New Phytol. 2005 Jun;166(3):859-67 [PMID: 15869647]
  29. Emerg Top Life Sci. 2021 May 21;5(2):231-237 [PMID: 33543231]
  30. Front Plant Sci. 2015 Apr 09;6:233 [PMID: 25914710]
  31. PLoS One. 2011;6(7):e21784 [PMID: 21755001]
  32. Front Plant Sci. 2022 Sep 02;13:979162 [PMID: 36119618]
  33. Theor Appl Genet. 2019 Mar;132(3):559-567 [PMID: 30547185]
  34. Biotechnol Biofuels. 2018 Sep 19;11:253 [PMID: 30250505]
  35. Drug Discov Today Dis Models. 2008 Winter;5(4):299-309 [PMID: 27840651]
  36. Funct Plant Biol. 2008 Dec;35(10):772-780 [PMID: 32688831]
  37. New Phytol. 2017 Aug;215(3):1274-1286 [PMID: 28653341]
  38. Curr Opin Biotechnol. 2020 Feb;61:102-109 [PMID: 31812911]
  39. Breed Sci. 2021 Feb;71(1):13-19 [PMID: 33762872]
  40. Ann Bot. 2011 Oct;108(6):1121-34 [PMID: 21856634]
  41. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12302-8 [PMID: 22826253]
  42. Methods Mol Biol. 2019;2014:371-386 [PMID: 31197809]
  43. Math Biosci. 2010 Nov;228(1):78-89 [PMID: 20816867]
  44. New Phytol. 2015 May;206(3):1075-1085 [PMID: 25598499]
  45. Trends Plant Sci. 2015 May;20(5):309-317 [PMID: 25825364]
  46. Front Plant Sci. 2017 May 15;8:786 [PMID: 28555150]
  47. Methods Mol Biol. 2022;2379:209-251 [PMID: 35188665]
  48. J Theor Biol. 2019 Sep 7;476:19-29 [PMID: 31128141]
  49. Plant Physiol. 2014 Mar 4;165(2):917-929 [PMID: 24596328]
  50. Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):339-44 [PMID: 22184215]
  51. Biophys J. 2000 Nov;79(5):2290-304 [PMID: 11053109]
  52. Front Plant Sci. 2013 Jul 24;4:272 [PMID: 23898339]
  53. Front Plant Sci. 2013 Oct 10;4:399 [PMID: 24133499]
  54. Comput Struct Biotechnol J. 2020 Nov 20;18:3555-3566 [PMID: 33304454]
  55. J Med Ethics. 2010 Nov;36(11):687-93 [PMID: 20935316]
  56. Sci Total Environ. 2021 Nov 15;795:148829 [PMID: 34252779]
  57. Biotechnol Bioeng. 2013 Mar;110(3):924-35 [PMID: 23055265]
  58. Ann Bot. 2005 Nov;96(6):1019-26 [PMID: 16126776]
  59. Trends Plant Sci. 2012 Dec;17(12):728-36 [PMID: 22818768]
  60. J Exp Bot. 2021 Sep 2;72(17):6003-6017 [PMID: 34173821]
  61. Plant Methods. 2020 May 11;16:66 [PMID: 32426023]
  62. Biotechnol Genet Eng Rev. 2008;25:1-40 [PMID: 21412348]
  63. Plant Physiol. 2014 Nov;166(3):1659-74 [PMID: 25248718]
  64. Ann Bot. 2014 Sep;114(4):877-87 [PMID: 24489020]
  65. Ann Bot. 2018 Apr 18;121(5):1033-1053 [PMID: 29432520]
  66. Front Bioeng Biotechnol. 2024 May 28;12:1397796 [PMID: 38863492]
  67. J Exp Bot. 2014 Dec;65(22):6399-410 [PMID: 25183746]
  68. Mol Syst Biol. 2014 Jul 01;10:735 [PMID: 24987114]
  69. Plant J. 2016 Sep;87(5):455-71 [PMID: 27155093]
  70. Biotechnol Bioeng. 2007 Aug 1;97(5):1259-77 [PMID: 17187441]
  71. Funct Plant Biol. 2016 Mar;43(2):105-113 [PMID: 32480445]
  72. Plant Physiol. 2010 Sep;154(1):311-23 [PMID: 20605915]
  73. Planta. 1992 Aug;188(1):28-38 [PMID: 24178196]
  74. J Exp Bot. 2019 Jan 7;70(2):379-386 [PMID: 30380107]
  75. Plant Breed. 2021 Apr;140(2):195-210 [PMID: 34239217]
  76. Planta. 1984 Sep;162(3):204-14 [PMID: 24253091]
  77. J Theor Biol. 2004 May 21;228(2):155-71 [PMID: 15094012]
  78. Plant Physiol. 2013 Jun;162(2):1060-72 [PMID: 23640755]
  79. Nat Commun. 2020 Dec 11;11(1):6379 [PMID: 33311504]
  80. Curr Biol. 2017 Sep 11;27(17):R858-R862 [PMID: 28898651]
  81. Mol Syst Biol. 2007;3:117 [PMID: 17551512]
  82. AoB Plants. 2021 Sep 08;13(5):plab055 [PMID: 34603653]
  83. Plant Methods. 2013 Oct 09;9(1):38 [PMID: 24107223]
  84. Ann Bot. 2018 Apr 18;121(5):1089-1104 [PMID: 29506106]
  85. Curr Opin Biotechnol. 2021 Feb;67:35-41 [PMID: 33360621]
  86. Plant J. 2013 Sep;75(6):1050-61 [PMID: 23738527]
  87. Trends Plant Sci. 2000 Dec;5(12):537-42 [PMID: 11120476]
  88. Plant Physiol. 2019 Mar;179(3):862-884 [PMID: 30692218]
  89. Plant Physiol. 2009 Nov;151(3):1570-81 [PMID: 19755544]
  90. Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):E4127-36 [PMID: 25197087]
  91. Biophys J. 2008 Dec 15;95(12):5606-17 [PMID: 18820235]
  92. Nat Biotechnol. 2010 Mar;28(3):245-8 [PMID: 20212490]
  93. New Phytol. 2004 Feb;161(2):341-370 [PMID: 33873498]
  94. Plant Cell Environ. 2009 Mar;32(3):286-99 [PMID: 19054348]
  95. Planta. 1980 Jun;149(1):78-90 [PMID: 24306196]
  96. Mol Biotechnol. 2021 Dec;63(12):1138-1154 [PMID: 34420149]
  97. Plant J. 2016 Jan;85(2):289-304 [PMID: 26576489]
  98. Plant J. 2010 Apr 1;62(1):64-76 [PMID: 20070567]
  99. Annu Rev Plant Biol. 2005;56:353-74 [PMID: 15862100]
  100. Plant J. 2020 Jul;103(1):21-31 [PMID: 32053236]
  101. Funct Plant Biol. 2008 Dec;35(10):876-884 [PMID: 32688839]
  102. Plant Physiol. 2010 Feb;152(2):579-89 [PMID: 20044452]
  103. Annu Rev Plant Biol. 2020 Apr 29;71:303-326 [PMID: 32017600]
  104. Plant Physiol. 2010 May;153(1):260-72 [PMID: 20207708]
  105. Biotechnol Bioeng. 2020 May;117(5):1562-1574 [PMID: 32022245]
  106. Plant Biotechnol J. 2014 Sep;12(7):934-40 [PMID: 24851712]

Word Cloud

Created with Highcharts 10.0.0syntheticbiologymultiscalemathematicalpotentialdeveloprisksmodelinganalysisenvironmentalagriculturalsolutionsPlantplantmodelsplantsintegratedengineeredmodelGlobalfoodinsecuritydegradationhighlighturgentneedsustainableemergespromisingyetriskyavenueoffersenhancedcroptraitsalsoentailsextensivedamagereviewhighlightscomplexitiesassociatedpresentingassessmitigateeffectivelyDespiteapplyingremainsunderutilizedadvocateintegratingtechnologicaladvancementsdatacomprehensiveunderstandingcropsacrossbiologicalscalesreviewingcommonapproachesmethodologiesapplicablepaperestablishesfoundationcreatingutilizingtechniquesparameterestimationbifurcationsensitivityresearcherscanidentifymutationaltargetsanticipatepleiotropiceffectstherebyenhancingsafetygeneticallyspeciesdemonstrateapproachongoingeffortshighlightedmaizeLenhanceresiliencesppdroughtMultiscaleMathematicalModelingSystemsBiology:FrameworkBoostSyntheticBiologyscience

Similar Articles

Cited By