GWAS identifies a polyembryony locus in mango: development of KASP and PACE markers for marker-assisted breeding.

Gul Shad Ali, Shamseldeen Eltaher, Jin Li, Barbie Freeman, Sukhwinder Singh
Author Information
  1. Gul Shad Ali: Subtropical Horticulture Research Station (SHRS), United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Miami, FL, United States.
  2. Shamseldeen Eltaher: Subtropical Horticulture Research Station (SHRS), United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Miami, FL, United States.
  3. Jin Li: Subtropical Horticulture Research Station (SHRS), United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Miami, FL, United States.
  4. Barbie Freeman: Subtropical Horticulture Research Station (SHRS), United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Miami, FL, United States.
  5. Sukhwinder Singh: Subtropical Horticulture Research Station (SHRS), United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Miami, FL, United States.

Abstract

Apomixis is a horticultural trait that enables clonal propagation of hybrids by producing asexual embryos from maternal cells in the ovule without meiosis. Many mango cultivars exhibit apomictic polyembryony, where one embryo develops from zygotic tissues and the rest from nucellar tissues, resulting in seedlings that are genetically identical to the mother tree. In L. commercially important rootstocks are raised from apomictic seeds, which are then grafted with desired cultivars. Identifying molecular markers for polyembryony and understanding its genetics would facilitate introducing this trait in commercially important cultivars. In this report, genome-wide association studies were conducted on a diversity panel consisting of 42 polyembryonic and 42 monoembryonic cultivars using high-density single nucleotide polymorphism (SNP) markers. These studies revealed that the polyembryony locus is in a 360-kb region on linkage group 17 of the 'Alphonso' reference genome. This locus contains the gene, which codes for an RWP-RK domain-containing protein previously implicated in citrus apomixis. Comparative genomic analyses revealed synteny between the citrus and the mango polyembryony loci, suggesting a common evolutionary mechanism for this trait. A total of 29 SNP markers in this locus were significantly associated with polyembryony in . Five of these markers were developed into convenient genotyping assays using competitive allele-specific PCR chemistry implemented in two different genotyping platforms - Kompetitive Allele-Specific PCR (KASP) and PCR allele competitive extension (PACE). The utility of these assays was validated and demonstrated in diverse germplasm collection and open-pollinated mango breeding populations with known pedigrees and polyembryony phenotypes. These SNP markers, especially those flanking the gene, provide a valuable tool for mango breeders to select polyembryonic progenies at the seedling stages in mango breeding programs.

Keywords

References

  1. Front Plant Sci. 2017 Apr 20;8:577 [PMID: 28473837]
  2. Hortic Res. 2022 Nov 21;10(2):uhac259 [PMID: 37601702]
  3. Bioinformatics. 2007 Oct 1;23(19):2633-5 [PMID: 17586829]
  4. BMC Plant Biol. 2015 Nov 14;15:277 [PMID: 26573148]
  5. Nature. 1950 Jul 29;166(4213):196-7 [PMID: 15439231]
  6. Hortic Res. 2023 Nov 08;10(12):uhad227 [PMID: 38077495]
  7. Bioinformatics. 2019 May 15;35(10):1786-1788 [PMID: 30321304]
  8. Genome Biol. 2020 Mar 6;21(1):60 [PMID: 32143734]
  9. Bioinformatics. 2008 Jun 1;24(11):1403-5 [PMID: 18397895]
  10. Front Plant Sci. 2021 Oct 12;12:749108 [PMID: 34712262]
  11. Sci Rep. 2022 Nov 30;12(1):20614 [PMID: 36450793]
  12. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  13. New Phytol. 2019 Jun;222(4):2023-2037 [PMID: 30730057]
  14. Nat Genet. 2017 May;49(5):765-772 [PMID: 28394353]
  15. Curr Top Dev Biol. 2019;131:565-604 [PMID: 30612631]
  16. J Mol Evol. 2005 Feb;60(2):229-37 [PMID: 15785851]
  17. Mol Ecol. 2005 Jul;14(8):2611-20 [PMID: 15969739]
  18. Nat Genet. 2022 Jan;54(1):73-83 [PMID: 34980919]
  19. Plant Cell. 1993 Oct;5(10):1425-1437 [PMID: 12271038]
  20. Plant Sci. 2012 Feb;183:131-42 [PMID: 22195586]
  21. Nat Biotechnol. 2018 Nov;36(10):983-987 [PMID: 30247488]
  22. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  23. BMC Plant Biol. 2018 Aug 13;18(1):166 [PMID: 30103701]
  24. Nat Genet. 2010 Apr;42(4):348-54 [PMID: 20208533]
  25. Mol Biol Evol. 1993 May;10(3):512-26 [PMID: 8336541]
  26. Genetics. 2000 Jun;155(2):945-59 [PMID: 10835412]
  27. Genomics Proteomics Bioinformatics. 2021 Aug;19(4):619-628 [PMID: 33662620]
  28. Front Plant Sci. 2016 Aug 30;7:1310 [PMID: 27625670]
  29. Breed Sci. 2019 Jun;69(2):332-344 [PMID: 31481843]

Word Cloud

Created with Highcharts 10.0.0mangopolyembryonymarkerscultivarslocustraitpolyembryonicSNPPCRKASPPACEbreedingapomictictissuescommerciallyimportantstudies42usingrevealedgenecitrusapomixisgenotypingassayscompetitiveGWASApomixishorticulturalenablesclonalpropagationhybridsproducingasexualembryosmaternalcellsovulewithoutmeiosisManyexhibitoneembryodevelopszygoticrestnucellarresultingseedlingsgeneticallyidenticalmothertreeLrootstocksraisedseedsgrafteddesiredIdentifyingmolecularunderstandinggeneticsfacilitateintroducingreportgenome-wideassociationconducteddiversitypanelconsistingmonoembryonichigh-densitysinglenucleotidepolymorphism360-kbregionlinkagegroup17'Alphonso'referencegenomecontainscodesRWP-RKdomain-containingproteinpreviouslyimplicatedComparativegenomicanalysessyntenylocisuggestingcommonevolutionarymechanismtotal29significantlyassociatedFivedevelopedconvenientallele-specificchemistryimplementedtwodifferentplatforms-KompetitiveAllele-Specificalleleextensionutilityvalidateddemonstrateddiversegermplasmcollectionopen-pollinatedpopulationsknownpedigreesphenotypesespeciallyflankingprovidevaluabletoolbreedersselectprogeniesseedlingstagesprogramsidentifiesmango:developmentmarker-assistedMAS

Similar Articles

Cited By

No available data.