Targeting Runx1 in Pathological Retinal Angiogenesis: A Potential Therapeutic Approach.

Xiaoyan Ding, Xiaodi Zhou, Xinyu Liu, Yanting Lai, Wenjia Yan, Yizhe Cheng, Aohan Hou, Limei Chen, Limei Sun
Author Information
  1. Xiaoyan Ding: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
  2. Xiaodi Zhou: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
  3. Xinyu Liu: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
  4. Yanting Lai: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
  5. Wenjia Yan: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
  6. Yizhe Cheng: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
  7. Aohan Hou: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
  8. Limei Chen: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
  9. Limei Sun: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

Abstract

Purpose: Neovascular eye diseases, such as proliferative diabetic retinopathy (PDR), wet age-related macular degeneration (wAMD) and retinopathy of prematurity (ROP), are major causes of vision loss and blindness worldwide. Our transcription factor motif enrichment analysis highlighted RUNX1 as a key regulator in the hypoxic response. The purpose of this study was to characterize how loss of Runx1 affects physiological and pathological retinal vasculature formation.
Methods: RNA-seq analysis and Transcription factor motif enrichment analysis were conducted in hypoxic and normoxic HUVECs. Conditional deletion of Runx1 in endothelial cells In mice was achieved using recombinase driver Cdh5-CreERT2. Vascular coverage, density, vessel progression, branchpoints, and sprout numbers was measured in retina of Runx1iECKO mice. The expression patterns, functions, and potential therapeutic value of RUNX1 were further explored with clinical samples, as well as in vivo and in vitro experiments. Bioinformatics and high-throughput sequencing were performed to identify potential target genes of Runx1. RT-qPCR and Western blot analyses were carried out to detect the changes of PI3-kinase/AKT/mTOR pathway.
Results: Loss of Runx1 in mice resulted in a reduction of the vascular coverage, density, vessel progression, branchpoints, and sprouts numbers of the retinal vascular network during its development. Notably, mature blood vessels remained unaffected by Runx1 inhibition. Upregulation of RUNX1 was observed in patients with PDR and ROP. RUNX1 Inhibition reduced endothelial cell proliferation, migration and tubule formation, leading to decreased pathological neovascularization, which is shown in oxygen-induced retinopathy. Mechanistically, in vitro experiments demonstrated that RUNX1 regulates EC angiogenesis through the PI3K/AKT/mTOR signaling pathway.
Conclusions: Runx1 is essential for physiological retinal vascularization. RUNX1 Inhibition may effectively decrease pathological neovascularization. Our findings suggest that targeting RUNX1 could be a promising therapeutic strategy for retinal neovascular disorders, preserving the integrity of mature blood vessels while selectively inhibiting neovascularization.

References

  1. Development. 1999 Jun;126(11):2563-75 [PMID: 10226014]
  2. Mech Ageing Dev. 2018 Jun;172:45-50 [PMID: 29155057]
  3. Cell Prolif. 2023 Jul;56(7):e13407 [PMID: 36694349]
  4. N Engl J Med. 2012 Dec 27;367(26):2515-26 [PMID: 23268666]
  5. Blood. 2010 Jun 17;115(24):5102-10 [PMID: 20154215]
  6. Sci Rep. 2020 Nov 30;10(1):20554 [PMID: 33257736]
  7. Mol Med Rep. 2015 Apr;11(4):2677-82 [PMID: 25514934]
  8. Eye Brain. 2016;8:67-79 [PMID: 27499653]
  9. Int J Hematol. 2005 Jul;82(1):1-8 [PMID: 16105753]
  10. J Biol Chem. 1999 Mar 19;274(12):8039-45 [PMID: 10075703]
  11. PLoS One. 2017 Jun 22;12(6):e0179758 [PMID: 28640846]
  12. Front Cell Dev Biol. 2021 Dec 16;9:812639 [PMID: 34977046]
  13. Invest Ophthalmol Vis Sci. 2010 Jun;51(6):2813-26 [PMID: 20484600]
  14. Drug Des Devel Ther. 2016 Jun 02;10:1857-67 [PMID: 27330279]
  15. FASEB J. 2021 Feb;35(2):e21155 [PMID: 33135824]
  16. Invest Ophthalmol Vis Sci. 2021 May 3;62(6):25 [PMID: 34036312]
  17. Biosci Rep. 2020 May 29;40(5): [PMID: 32319515]
  18. Arterioscler Thromb Vasc Biol. 2021 Jan;41(1):20-34 [PMID: 33115268]
  19. PLoS One. 2016 Mar 31;11(3):e0152833 [PMID: 27031698]
  20. Invest Ophthalmol Vis Sci. 2022 Jul 8;63(8):25 [PMID: 35895036]
  21. Nat Commun. 2016 Nov 24;7:13517 [PMID: 27882935]
  22. Cell Death Dis. 2019 Nov 21;10(12):877 [PMID: 31754093]
  23. Development. 2002 Apr;129(8):2015-30 [PMID: 11934867]
  24. Cells. 2022 Oct 01;11(19): [PMID: 36231060]
  25. Nat Protoc. 2009;4(11):1565-73 [PMID: 19816419]
  26. Am J Pathol. 2021 Mar;191(3):418-424 [PMID: 33345998]
  27. Angiogenesis. 2023 Aug;26(3):313-347 [PMID: 37060495]
  28. Angiogenesis. 2022 May;25(2):159-179 [PMID: 34524600]
  29. J Pharmacol Exp Ther. 2023 Jul;386(1):15-25 [PMID: 37142441]
  30. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  31. Nat Commun. 2021 Jan 18;12(1):420 [PMID: 33462242]
  32. BMJ Open Diabetes Res Care. 2021 Aug;9(1): [PMID: 34348917]
  33. Cytotechnology. 2014 Mar;66(2):229-38 [PMID: 23553018]
  34. Cell. 2000 Jul 21;102(2):199-209 [PMID: 10943840]
  35. Int J Hematol. 2013 Jun;97(6):726-34 [PMID: 23613270]
  36. Diabetes. 2017 Jul;66(7):1950-1956 [PMID: 28400392]
  37. Cell Physiol Biochem. 2018;46(1):203-212 [PMID: 29587264]
  38. Int J Mol Sci. 2020 Nov 03;21(21): [PMID: 33153227]

MeSH Term

Animals
Retinal Neovascularization
Mice
Humans
Core Binding Factor Alpha 2 Subunit
Retinal Vessels
Human Umbilical Vein Endothelial Cells
Disease Models, Animal
Mice, Inbred C57BL
Cells, Cultured
Blotting, Western
Cell Proliferation
Signal Transduction
Cell Movement
Angiogenesis

Chemicals

Core Binding Factor Alpha 2 Subunit
Runx1 protein, mouse
RUNX1 protein, human

Word Cloud

Created with Highcharts 10.0.0RUNX1Runx1retinalretinopathyanalysispathologicalmiceneovascularizationPDRROPlossfactormotifenrichmenthypoxicphysiologicalformationendothelialcoveragedensityvesselprogressionbranchpointsnumberspotentialtherapeuticvitroexperimentspathwayvascularmaturebloodvesselsInhibitionPurpose:Neovasculareyediseasesproliferativediabeticwetage-relatedmaculardegenerationwAMDprematuritymajorcausesvisionblindnessworldwidetranscriptionhighlightedkeyregulatorresponsepurposestudycharacterizeaffectsvasculatureMethods:RNA-seqTranscriptionconductednormoxicHUVECsConditionaldeletioncellsachievedusingrecombinasedriverCdh5-CreERT2VascularsproutmeasuredretinaRunx1iECKOexpressionpatternsfunctionsvalueexploredclinicalsampleswellvivoBioinformaticshigh-throughputsequencingperformedidentifytargetgenesRT-qPCRWesternblotanalysescarrieddetectchangesPI3-kinase/AKT/mTORResults:LossresultedreductionsproutsnetworkdevelopmentNotablyremainedunaffectedinhibitionUpregulationobservedpatientsreducedcellproliferationmigrationtubuleleadingdecreasedshownoxygen-inducedMechanisticallydemonstratedregulatesECangiogenesisPI3K/AKT/mTORsignalingConclusions:essentialvascularizationmayeffectivelydecreasefindingssuggesttargetingpromisingstrategyneovasculardisorderspreservingintegrityselectivelyinhibitingTargetingPathologicalRetinalAngiogenesis:PotentialTherapeuticApproach

Similar Articles

Cited By