Assembly, network and functional compensation of specialists and generalists in poplar rhizosphere under salt stress.

Yao Du, Lei Zhang, Yan Yang, Kexin Cheng, Kaihang Li, Yingwen Zhou, Lu Li, Yi Jin, Xiaoqing He
Author Information
  1. Yao Du: State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China.
  2. Lei Zhang: College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
  3. Yan Yang: College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
  4. Kexin Cheng: College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
  5. Kaihang Li: College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
  6. Yingwen Zhou: College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
  7. Lu Li: College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
  8. Yi Jin: College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
  9. Xiaoqing He: State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China. lenahe@bjfu.edu.cn.

Abstract

Salinity is a major challenge for plant growth, but Populus euphratica, a species native to desert regions, has a remarkable ability to tolerate salt stress. This study aimed to explore how salinity affects the rhizosphere microbiome of P. euphratica, focusing on diversity patterns, assembly mechanisms, network characterization, and the functional roles of specialists and generalists under salt stress conditions. The findings revealed that increased salinity enhances the complexity of the rhizosphere microbial network and the diversity of bacterial specialists. Specialists demonstrated a wider range of environmental adaptation and played a pivotal role in species interactions within the microbial network. Notably, salinity stress altered the structure and assembly of plant rhizosphere specialists, facilitating functional compensation and potentially augmenting the health of P. euphratica. This research offers critical insights into the microbiome dynamics of P. euphratica under salinity stress, advancing the understanding of specialists and generalists in the rhizosphere.

References

  1. Environ Microbiol. 2017 Jan;19(1):287-300 [PMID: 27871146]
  2. Mol Ecol. 2018 Jan;27(2):550-563 [PMID: 29134738]
  3. Front Microbiol. 2019 Aug 06;10:1726 [PMID: 31447801]
  4. Nat Plants. 2021 Apr;7(4):481-499 [PMID: 33833418]
  5. Microbiol Spectr. 2022 Aug 31;10(4):e0134922 [PMID: 35950864]
  6. Glob Chang Biol. 2020 Aug;26(8):4506-4520 [PMID: 32324306]
  7. J Hazard Mater. 2023 Jun 5;451:131096 [PMID: 36893602]
  8. Ecotoxicol Environ Saf. 2020 May;194:110374 [PMID: 32120174]
  9. Front Microbiol. 2024 Jun 17;15:1381883 [PMID: 38952448]
  10. FEMS Microbiol Ecol. 2016 Nov;92(11): [PMID: 27543321]
  11. Nat Commun. 2024 Mar 1;15(1):1907 [PMID: 38429257]
  12. Water Res. 2021 Feb 15;190:116751 [PMID: 33348071]
  13. ISME J. 2020 Aug;14(8):1943-1954 [PMID: 32341473]
  14. J Adv Res. 2022 Sep;40:17-27 [PMID: 36100325]
  15. Nat Commun. 2019 Aug 23;10(1):3833 [PMID: 31444343]
  16. Nat Commun. 2018 Aug 2;9(1):3033 [PMID: 30072764]
  17. ISME J. 2022 Aug;16(8):1907-1920 [PMID: 35444261]
  18. J Microbiol Biotechnol. 2021 Mar 28;31(3):398-407 [PMID: 33397828]
  19. ISME J. 2021 Oct;15(10):2865-2882 [PMID: 33875820]
  20. Environ Microbiol. 2022 Sep;24(9):4153-4166 [PMID: 35590455]
  21. Mol Ecol. 2022 Jan;31(1):161-173 [PMID: 34626522]
  22. Nat Commun. 2017 Oct 27;8(1):1162 [PMID: 29079803]
  23. Nat Microbiol. 2024 Feb;9(2):490-501 [PMID: 38212658]
  24. Science. 2023 May 26;380(6647):835-840 [PMID: 37228219]
  25. Nat Biotechnol. 2020 Jun;38(6):685-688 [PMID: 32483366]
  26. mSystems. 2019 Nov 19;4(6): [PMID: 31744906]
  27. Nat Commun. 2013;4:2797 [PMID: 24256998]
  28. Comput Struct Biotechnol J. 2022 Nov 25;20:6543-6551 [PMID: 36467579]
  29. ISME J. 2016 Aug;10(8):1891-901 [PMID: 26771927]
  30. Syst Appl Microbiol. 2003 Sep;26(3):357-66 [PMID: 14529178]
  31. Biotechnol Adv. 2016 Nov 15;34(7):1245-1259 [PMID: 27587331]
  32. Water Res. 2022 Jul 15;220:118693 [PMID: 35667165]
  33. Sci Total Environ. 2022 Sep 10;838(Pt 4):156334 [PMID: 35660444]
  34. Int J Syst Evol Microbiol. 2019 May;69(5):1433-1437 [PMID: 30860463]
  35. Nat Biotechnol. 2013 Sep;31(9):814-21 [PMID: 23975157]
  36. mSystems. 2021 Dec 21;6(6):e0112521 [PMID: 34846165]
  37. Imeta. 2022 Mar 14;1(1):e8 [PMID: 38867725]
  38. Proc Natl Acad Sci U S A. 2022 Dec 13;119(50):e2210338119 [PMID: 36472959]
  39. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  40. J Biotechnol. 2016 Mar 10;221:114-5 [PMID: 26808870]
  41. Nat Plants. 2022 Aug;8(8):887-896 [PMID: 35915145]
  42. BMC Bioinformatics. 2008 Jul 09;9:303 [PMID: 18613966]
  43. Environ Microbiol. 2006 Apr;8(4):732-40 [PMID: 16584484]
  44. Plant Physiol Biochem. 2024 Feb;207:108328 [PMID: 38183902]
  45. Microbiol Mol Biol Rev. 2017 Oct 11;81(4): [PMID: 29021219]

MeSH Term

Populus
Rhizosphere
Soil Microbiology
Salt Stress
Microbiota
Bacteria
Plant Roots
Salinity
RNA, Ribosomal, 16S

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0stressrhizospherespecialistseuphraticasalinitynetworksaltPfunctionalgeneralistsplantspeciesmicrobiomediversityassemblymicrobialcompensationSalinitymajorchallengegrowthPopulusnativedesertregionsremarkableabilitytoleratestudyaimedexploreaffectsfocusingpatternsmechanismscharacterizationrolesconditionsfindingsrevealedincreasedenhancescomplexitybacterialSpecialistsdemonstratedwiderrangeenvironmentaladaptationplayedpivotalroleinteractionswithinNotablyalteredstructurefacilitatingpotentiallyaugmentinghealthresearchofferscriticalinsightsdynamicsadvancingunderstandingAssemblypoplar

Similar Articles

Cited By

No available data.