Evaluating a novel reproduction number estimation method: a comparative analysis.

Katsuro Anazawa
Author Information
  1. Katsuro Anazawa: Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan. anazawa@k.u-tokyo.ac.jp.

Abstract

This paper presents practical methodologies for determining effective reproduction numbers, R(t), providing valuable insights for researchers and public health officials. It proposes multiple simplified approaches for estimating R(t) of infectious diseases and compares their effectiveness. These approaches include methods based on exponential, fixed (delta), normal, and gamma distributions for the generation time. The exponential and fixed generation time methods offer convenience as they rely solely on the mean generation time and the number of new infections. However, they are sensitive to the variance of the generation time distribution: the exponential method may underestimate R(t) when the variance is small, while the fixed generation time method may overestimate R(t) when the variance is large. The normal distribution method also risks underestimation, depending on the growth rate. In contrast, the gamma distribution method demonstrates greater robustness and accuracy across a variety of scenarios. A key contribution of this work is the consolidated presentation of these estimation methods, along with the novel derivation of an accurate R(t) formula based on the gamma distribution. This research offers practical guidance for selecting the most appropriate R(t) estimation method, emphasizing the importance of accounting for the specific characteristics of the infectious disease's generation time distribution.

Keywords

References

  1. Proc Biol Sci. 2007 Feb 22;274(1609):599-604 [PMID: 17476782]
  2. J Prev Med Public Health. 2020 May;53(3):151-157 [PMID: 32498136]
  3. J R Soc Interface. 2021 Jan;18(174):20200756 [PMID: 33402022]
  4. J Math Biol. 1990;28(4):365-82 [PMID: 2117040]
  5. J R Soc Interface. 2005 Sep 22;2(4):281-93 [PMID: 16849186]
  6. J Glob Infect Dis. 2020 May 22;12(2):47-93 [PMID: 32773996]
  7. PLOS Digit Health. 2022 Jun 27;1(6):e0000052 [PMID: 36812522]
  8. Sci Rep. 2022 Mar 17;12(1):4623 [PMID: 35301351]
  9. Nat Commun. 2022 Dec 13;13(1):7727 [PMID: 36513688]
  10. J Math Biol. 2012 Aug;65(2):309-48 [PMID: 21842424]
  11. J Glob Health. 2022 Feb 05;12:05004 [PMID: 35136602]
  12. Am J Epidemiol. 2013 Nov 1;178(9):1505-12 [PMID: 24043437]
  13. Science. 2003 Jun 20;300(5627):1966-70 [PMID: 12766207]
  14. PLoS One. 2022 Feb 9;17(2):e0263001 [PMID: 35139089]
  15. PLoS One. 2022 Feb 25;17(2):e0264455 [PMID: 35213645]
  16. Eur Phys J Plus. 2021;136(4):386 [PMID: 33868891]
  17. Proc Biol Sci. 2003 Jul 7;270(1522):1359-64 [PMID: 12965026]
  18. Am J Epidemiol. 2004 Sep 15;160(6):509-16 [PMID: 15353409]
  19. Elife. 2022 Feb 09;11: [PMID: 35138250]
  20. Infect Dis Model. 2020;5:889-896 [PMID: 33163739]
  21. Science. 2020 Aug 28;369(6507):1106-1109 [PMID: 32694200]
  22. Bull Math Biol. 1991;53(1-2):33-55 [PMID: 2059741]
  23. Int J Infect Dis. 2020 Apr;93:284-286 [PMID: 32145466]
  24. PLoS Comput Biol. 2020 Dec 10;16(12):e1008409 [PMID: 33301457]
  25. Epidemics. 2019 Dec;29:100356 [PMID: 31624039]
  26. IEEE Rev Biomed Eng. 2022;15:325-340 [PMID: 33769936]
  27. Epidemics. 2022 Sep;40:100604 [PMID: 35780515]
  28. Biosaf Health. 2020 Jun;2(2):57-59 [PMID: 32835209]
  29. Epidemics. 2023 Sep;44:100692 [PMID: 37399634]
  30. J Math Biol. 2006 Sep;53(3):421-36 [PMID: 16823580]
  31. BMC Med. 2021 Jan 28;19(1):32 [PMID: 33504336]

MeSH Term

Humans
Communicable Diseases
Basic Reproduction Number

Word Cloud

Created with Highcharts 10.0.0timeRtgenerationmethoddistributionmethodsexponentialfixedgammanumbervarianceestimationpracticalreproductionapproachesinfectiousbasednormalmaynovelpaperpresentsmethodologiesdeterminingeffectivenumbersprovidingvaluableinsightsresearcherspublichealthofficialsproposesmultiplesimplifiedestimatingdiseasescompareseffectivenessincludedeltadistributionsofferconveniencerelysolelymeannewinfectionsHoweversensitivedistribution:underestimatesmalloverestimatelargealsorisksunderestimationdependinggrowthratecontrastdemonstratesgreaterrobustnessaccuracyacrossvarietyscenarioskeycontributionworkconsolidatedpresentationalongderivationaccurateformularesearchoffersguidanceselectingappropriateemphasizingimportanceaccountingspecificcharacteristicsdisease'sEvaluatingmethod:comparativeanalysisEuler���LotkaequationGammaGenerationReproductionSARS-CoV-2

Similar Articles

Cited By