Towards an interpretable deep learning model of cancer.

Avlant Nilsson, Nikolaos Meimetis, Douglas A Lauffenburger
Author Information
  1. Avlant Nilsson: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  2. Nikolaos Meimetis: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  3. Douglas A Lauffenburger: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. lauffen@mit.edu.

Abstract

Cancer is a manifestation of dysfunctional cell states. It emerges from an interplay of intrinsic and extrinsic factors that disrupt cellular dynamics, including genetic and epigenetic alterations, as well as the tumor microenvironment. This complexity can make it challenging to infer molecular causes for treating the disease. This may be addressed by system-wide computer models of cells, as they allow rapid generation and testing of hypotheses that would be too slow or impossible to perform in the laboratory and clinic. However, so far, such models have been impeded by both experimental and computational limitations. In this perspective, we argue that they can now be achieved using deep learning algorithms to integrate omics data and prior knowledge of molecular networks. Such models would have many applications in precision oncology, e.g., for identifying drug targets and biomarkers, predicting resistance mechanisms and toxicity effects of drugs, or simulating cell-cell interactions in the microenvironment.

References

  1. Nature. 2021 Oct;598(7880):348-352 [PMID: 34552244]
  2. Sci Rep. 2021 Jun 29;11(1):13505 [PMID: 34188098]
  3. Nat Commun. 2022 Aug 1;13(1):4450 [PMID: 35915108]
  4. J Chem Inf Model. 2024 Jan 8;64(1):9-17 [PMID: 38147829]
  5. Nat Rev Genet. 2019 Jul;20(7):389-403 [PMID: 30971806]
  6. Nat Rev Genet. 2021 Feb;22(2):71-88 [PMID: 33168968]
  7. Proc Natl Acad Sci U S A. 2021 Dec 7;118(49): [PMID: 34873056]
  8. Nat Cancer. 2021 Feb;2(2):233-244 [PMID: 34223192]
  9. J R Soc Interface. 2017 Aug;14(133): [PMID: 28768879]
  10. Mol Syst Biol. 2021 Jan;17(1):e9730 [PMID: 33502086]
  11. Nat Commun. 2023 Aug 3;14(1):4669 [PMID: 37537192]
  12. Sci Signal. 2020 Mar 24;13(624): [PMID: 32209698]
  13. N Engl J Med. 2015 Feb 26;372(9):793-5 [PMID: 25635347]
  14. Nucleic Acids Res. 2003 Jan 1;31(1):258-61 [PMID: 12519996]
  15. Nucleic Acids Res. 2002 Jan 1;30(1):207-10 [PMID: 11752295]
  16. iScience. 2024 Mar 14;27(4):109509 [PMID: 38591003]
  17. Elife. 2016 Oct 22;5: [PMID: 27770567]
  18. Trends Microbiol. 2007 Jan;15(1):45-50 [PMID: 17113776]
  19. Genome Biol. 2021 Nov 29;22(1):323 [PMID: 34844637]
  20. BMC Bioinformatics. 2006 Mar 20;7 Suppl 1:S7 [PMID: 16723010]
  21. J R Soc Interface. 2018 Apr;15(141): [PMID: 29618526]
  22. Cell Rep. 2021 May 25;35(8):109157 [PMID: 34038718]
  23. Nat Rev Genet. 2004 Feb;5(2):101-13 [PMID: 14735121]
  24. Biosystems. 2017 Mar - Apr;153-154:6-25 [PMID: 28174135]
  25. Annu Rev Pathol. 2024 Jan 24;19:541-570 [PMID: 37871132]
  26. Curr Opin Syst Biol. 2018 Feb;7:8-15 [PMID: 29806041]
  27. Sci Transl Med. 2019 Sep 11;11(509): [PMID: 31511426]
  28. Cell. 2017 Nov 30;171(6):1437-1452.e17 [PMID: 29195078]
  29. Nat Methods. 2017 Nov;14(11):1083-1086 [PMID: 28991892]
  30. Nat Commun. 2019 Apr 23;10(1):1841 [PMID: 31015463]
  31. Genome Res. 2019 Aug;29(8):1363-1375 [PMID: 31340985]
  32. BMC Syst Biol. 2013 Dec 13;7:139 [PMID: 24330611]
  33. Science. 2022 May 13;376(6594):eabl4896 [PMID: 35549404]
  34. Genome Biol. 2020 Aug 3;21(1):190 [PMID: 32746932]
  35. Bioinformatics. 2017 Nov 15;33(22):3670-3672 [PMID: 28666369]
  36. J R Soc Interface. 2017 Jun;14(131): [PMID: 28615495]
  37. NPJ Precis Oncol. 2022 Jun 7;6(1):35 [PMID: 35672443]
  38. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  39. Mol Syst Biol. 2020 Jul;16(7):e8955 [PMID: 32696599]
  40. Nature. 1989 Jul 20;340(6230):245-6 [PMID: 2547163]
  41. Nat Cancer. 2024 Jun;5(6):938-952 [PMID: 38637658]
  42. PLoS One. 2022 Feb 10;17(2):e0263150 [PMID: 35143521]
  43. Nature. 2023 Feb;614(7949):742-751 [PMID: 36755098]
  44. Bioinformatics. 2020 Jul 1;36(Suppl_1):i499-i507 [PMID: 32657418]
  45. Bioinformatics. 2019 Apr 1;35(7):1188-1196 [PMID: 30169736]
  46. Nat Med. 2022 Nov;28(11):2309-2320 [PMID: 36138150]
  47. Cell Syst. 2018 Dec 26;7(6):567-579.e6 [PMID: 30503647]
  48. Trends Cancer. 2018 Feb;4(2):110-118 [PMID: 29458961]
  49. NPJ Syst Biol Appl. 2023 Nov 18;9(1):58 [PMID: 37980358]
  50. Nat Commun. 2020 Jul 20;11(1):3639 [PMID: 32686665]
  51. Exp Mol Med. 2020 Sep;52(9):1452-1465 [PMID: 32929226]
  52. Nature. 2012 Oct 25;490(7421):556-60 [PMID: 23023127]
  53. Cell Rep. 2019 Dec 10;29(11):3367-3373.e4 [PMID: 31825821]
  54. PLoS Comput Biol. 2019 Apr 29;15(4):e1006981 [PMID: 31034466]
  55. Mol Syst Biol. 2021 Jan;17(1):e8792 [PMID: 33434350]
  56. Anal Chim Acta. 2021 Jan 2;1141:144-162 [PMID: 33248648]
  57. Nat Biotechnol. 2018 Mar;36(3):272-281 [PMID: 29457794]
  58. Genome Biol. 2020 Feb 7;21(1):31 [PMID: 32033589]
  59. Cancer Discov. 2022 Jan;12(1):31-46 [PMID: 35022204]
  60. PLoS Comput Biol. 2021 Dec 28;17(12):e1009689 [PMID: 34962919]
  61. Nature. 2005 Oct 20;437(7062):1173-8 [PMID: 16189514]
  62. Mol Syst Biol. 2022 Jul;18(7):e11036 [PMID: 35880747]
  63. Signal Transduct Target Ther. 2021 May 31;6(1):201 [PMID: 34054126]
  64. Nat Commun. 2022 Jun 2;13(1):3069 [PMID: 35654811]
  65. NPJ Syst Biol Appl. 2019 Nov 11;5:40 [PMID: 31728204]
  66. Science. 2003 Oct 17;302(5644):449-53 [PMID: 14564010]
  67. Nat Rev Genet. 2012 Dec;13(12):840-52 [PMID: 23090257]
  68. Cell. 2016 May 5;165(4):910-20 [PMID: 27087446]
  69. Nat Methods. 2016 Nov 29;13(12):966-967 [PMID: 27898060]
  70. Nat Commun. 2018 Apr 10;9(1):1366 [PMID: 29636450]
  71. Nucleic Acids Res. 2023 Jan 6;51(D1):D877-D889 [PMID: 36200827]
  72. PLoS One. 2012;7(7):e40052 [PMID: 22815723]

Grants

  1. 2019-06349/Swedish Research Council
  2. graduate fellowship/Takeda-MIT
  3. AI-201700104/NIH HHS

Word Cloud

Created with Highcharts 10.0.0modelsmicroenvironmentcanmoleculardeeplearningCancermanifestationdysfunctionalcellstatesemergesinterplayintrinsicextrinsicfactorsdisruptcellulardynamicsincludinggeneticepigeneticalterationswelltumorcomplexitymakechallenginginfercausestreatingdiseasemayaddressedsystem-widecomputercellsallowrapidgenerationtestinghypothesesslowimpossibleperformlaboratoryclinicHoweverfarimpededexperimentalcomputationallimitationsperspectivearguenowachievedusingalgorithmsintegrateomicsdatapriorknowledgenetworksmanyapplicationsprecisiononcologyegidentifyingdrugtargetsbiomarkerspredictingresistancemechanismstoxicityeffectsdrugssimulatingcell-cellinteractionsTowardsinterpretablemodelcancer

Similar Articles

Cited By

No available data.