Coarse-graining network flow through statistical physics and machine learning.

Zhang Zhang, Arsham Ghavasieh, Jiang Zhang, Manlio De Domenico
Author Information
  1. Zhang Zhang: School of Systems Science, Beijing Normal University, Beijing, China. zhang.zhang@mail.bnu.edu.cn. ORCID
  2. Arsham Ghavasieh: Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA.
  3. Jiang Zhang: School of Systems Science, Beijing Normal University, Beijing, China. ORCID
  4. Manlio De Domenico: Department of Physics & Astronomy 'Galileo Galilei', University of Padua, Padua, Italy. manlio.dedomenico@unipd.it.

Abstract

Information dynamics plays a crucial role in complex systems, from cells to societies. Recent advances in statistical physics have made it possible to capture key network properties, such as flow diversity and signal speed, using entropy and free energy. However, large system sizes pose computational challenges. We use graph neural networks to identify suitable groups of components for coarse-graining a network and achieve a low computational complexity, suitable for practical application. Our approach preserves information flow even under significant compression, as shown through theoretical analysis and experiments on synthetic and empirical networks. We find that the model merges nodes with similar structural properties, suggesting they perform redundant roles in information transmission. This method enables low-complexity compression for extremely large networks, offering a multiscale perspective that preserves information flow in biological, social, and technological networks better than existing methods mostly focused on network structure.

References

  1. Neuroimage. 2017 Oct 15;160:73-83 [PMID: 27845257]
  2. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036104 [PMID: 17025705]
  3. Netw Neurosci. 2021 Aug 30;5(3):831-850 [PMID: 34746629]
  4. Phys Rev Lett. 2017 Apr 21;118(16):168301 [PMID: 28474920]
  5. Nat Phys. 2013;9: [PMID: 24319492]
  6. Phys Rev E. 2023 Apr;107(4-1):044304 [PMID: 37198772]
  7. Phys Rev E. 2020 Nov;102(5-1):052304 [PMID: 33327131]
  8. Phys Rev Lett. 2002 Dec 9;89(24):248701 [PMID: 12484988]
  9. Nat Commun. 2017 Dec 19;8(1):2181 [PMID: 29259160]
  10. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 2):026112 [PMID: 12636753]
  11. Nature. 1998 Jun 4;393(6684):440-2 [PMID: 9623998]
  12. Nat Rev Mol Cell Biol. 2001 Dec;2(12):908-16 [PMID: 11733770]
  13. Phys Rev Lett. 2007 Mar 9;98(10):108103 [PMID: 17358570]
  14. IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):4-24 [PMID: 32217482]
  15. Science. 2016 Jun 17;352(6292):1459-63 [PMID: 27313046]
  16. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):042809 [PMID: 24827295]
  17. Phys Rev Lett. 2006 Jan 13;96(1):018701 [PMID: 16486532]
  18. Nature. 2005 Jan 27;433(7024):392-5 [PMID: 15674285]
  19. Phys Rev Lett. 2008 Oct 3;101(14):148701 [PMID: 18851585]
  20. Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82 [PMID: 16723398]
  21. Science. 2018 Jun 8;360(6393):1116-1119 [PMID: 29880688]
  22. Nat Phys. 2019 Apr;15(4):313-320 [PMID: 30956684]
  23. Nature. 2008 May 1;453(7191):98-101 [PMID: 18451861]
  24. Phys Rev Lett. 2005 Jun 3;94(21):218701 [PMID: 16090357]
  25. Science. 2016 Jul 8;353(6295):163-6 [PMID: 27387949]
  26. IEEE Trans Pattern Anal Mach Intell. 2023 May;45(5):5370-5390 [PMID: 36251910]
  27. Phys Rep. 2014 Nov 1;544(1):1-122 [PMID: 32834429]
  28. Front Neurosci. 2019 Jun 06;13:585 [PMID: 31249501]
  29. Science. 1999 Oct 15;286(5439):509-12 [PMID: 10521342]
  30. Phys Rev Lett. 2007 Jul 20;99(3):038701 [PMID: 17678338]
  31. Trends Cogn Sci. 2020 Apr;24(4):302-315 [PMID: 32160567]
  32. Phys Rev Lett. 2010 Jan 15;104(2):025701 [PMID: 20366610]
  33. Science. 2019 Jul 12;365(6449):185-189 [PMID: 31296772]
  34. Nat Methods. 2020 Feb;17(2):147-154 [PMID: 31907445]
  35. Phys Rev Lett. 2006 Mar 24;96(11):114102 [PMID: 16605825]
  36. Nat Rev Mol Cell Biol. 2008 Oct;9(10):770-80 [PMID: 18797474]

Word Cloud

Created with Highcharts 10.0.0networkflownetworksinformationstatisticalphysicspropertieslargecomputationalsuitablepreservescompressionInformationdynamicsplayscrucialrolecomplexsystemscellssocietiesRecentadvancesmadepossiblecapturekeydiversitysignalspeedusingentropyfreeenergyHoweversystemsizesposechallengesusegraphneuralidentifygroupscomponentscoarse-grainingachievelowcomplexitypracticalapplicationapproachevensignificantshowntheoreticalanalysisexperimentssyntheticempiricalfindmodelmergesnodessimilarstructuralsuggestingperformredundantrolestransmissionmethodenableslow-complexityextremelyofferingmultiscaleperspectivebiologicalsocialtechnologicalbetterexistingmethodsmostlyfocusedstructureCoarse-grainingmachinelearning

Similar Articles

Cited By