Double-edged sword effect of GPX4 in skin homeostasis and diseases.

Hanzhang Xu, Li Yang, Yingli Wu, Hu Lei
Author Information
  1. Hanzhang Xu: Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  2. Li Yang: Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  3. Yingli Wu: Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  4. Hu Lei: Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China. hulei@shsmu.edu.cn.

Abstract

Glutathione peroxidase 4 (GPX4) is a crucial antioxidant enzyme that plays a vital role in protecting cells from oxidative damage and lipid peroxidation. In the context of skin diseases, GPX4 serves as a key regulator of oxidative stress and inflammation, both of which are significant features of various skin conditions. By preventing lipid peroxidation and maintaining membrane integrity, GPX4 acts as a safeguard against cell death pathways, particularly ferroptosis, in skin diseases. Dysregulation of GPX4 in conditions such as dermatitis, psoriasis, and skin cancer is linked to heightened oxidative stress, inflammation, and tissue damage. Understanding the role of GPX4 and its intricate interactions in skin disease pathogenesis can aid in more effectively targeting oxidative stress and inflammation, leading to promising therapeutic interventions. This review summarizes the role of GPX4 in maintaining skin homeostasis and its involvement in disease, proposing strategies to target GPX4, including its post-translational modifications. Investigate the precise mechanism through which GPX4 influences the onset of skin diseases, and utilize GPX4 agonists or inhibitors as potential treatments.

Keywords

References

  1. Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M (2008) Glutathione peroxidase family - an evolutionary overview. FEBS J 275:3959–3970 [PMID: 18616466]
  2. Flohe L, Toppo S, Orian L (2022) The glutathione peroxidase family: discoveries and mechanism. Free Radical Bio Med 187:113–122 [DOI: 10.1016/j.freeradbiomed.2022.05.003]
  3. Pei J, Pan XY, Wei GH, Hua Y (2023) Research progress of glutathione peroxidase family (GPX) in redoxidation. Front Pharmacol 14. https://doi.org/10.3389/fphar.2023.1147414
  4. Xie YC, Kang R, Klionsky DJ, Tang DL (2023) GPX4 in cell death, autophagy, and disease. Autophagy 19:2621–2638 [PMID: 37272058]
  5. Liu Y, Wan YC, Jiang Y, Zhang L, Cheng WJ (2023) GPX4: the hub of lipid oxidation, ferroptosis, disease and treatment. Bba-Rev Cancer 1878. https://doi.org/10.1016/j.bbcan.2023.188890
  6. Jiang XJ, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Bio 22:266–282 [DOI: 10.1038/s41580-020-00324-8]
  7. Tosatto SCE, Bosello V, Fogolari F, Mauri P, Roveri A, Toppo S, Flohé L, Ursini F, Maiorino M (2008) The catalytic site of glutathione peroxidases. Antioxid Redox Sign 10:1515–1525 [DOI: 10.1089/ars.2008.2055]
  8. Forcina GC, Dixon SJ (2019) GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis, Proteomics 19. https://doi.org/10.1002/pmic.201800311
  9. Sun YT, Chen P, Zhai BT, Zhang MM, Xiang Y, Fang JH, Xu SN, Gao YF, Chen X, Sui XB, Li GX (2020) The emerging role of ferroptosis in inflammation. Biomed Pharmacother 127. https://doi.org/10.1016/j.biopha.2020.110108
  10. Baek J, Lee MG (2016) Oxidative stress and antioxidant strategies in dermatology. Redox Rep 21:164–169 [PMID: 26020527]
  11. Shou YH, Yang L, Yang YS, Xu JH (2021) Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation. Cell Death Disease 12. https://doi.org/10.1038/s41419-021-04284-5
  12. Vats K, Kruglov O, Mizes A, Samovich SN, Amoscato AA, Tyurin VA, Tyurina YY, Kagan VE, Bunimovich YL (2021) Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure. Redox Biol 47. https://doi.org/10.1016/j.redox.2021.102143
  13. Leni Z, Künzi L, Geiser M (2020) Air pollution causing oxidative stress. Curr Opin Toxicol 20–21:1–8
  14. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL,Stockwell BR (2014) Regulation of Ferroptotic Cancer Cell death by GPX4. Cell 156:317–331
  15. Sengupta A, Lichti UF, Carlson BA, Cataisson C, Ryscavage AO, Mikulec C, Conrad M, Fischer SM, Hatfield DL, Yuspa SH (2013) Targeted Disruption of Glutathione Peroxidase 4 in mouse skin epithelial cells impairs postnatal hair follicle morphogenesis that is partially rescued through inhibition of COX-2. J Invest Dermatol 133:1731–1741 [PMID: 23364477]
  16. Cui L, Jia Y, Cheng ZW, Gao Y, Zhang GL, Li JY, He CF (2016) Advancements in the maintenance of skin barrier/skin lipid composition and the involvement of metabolic enzymes. J Cosmet Dermatol-Us 15:549–558 [DOI: 10.1111/jocd.12245]
  17. Hirata Y, Cai RQ, Volchuk A, Steinberg BE, Saito Y, Matsuzawa A, Grinstein S, Freeman SA (2023) Lipid peroxidation increases membrane tension, Piezo1 gating, and cation permeability to execute ferroptosis. Curr Biol 33:1282–1294e1285 [PMID: 36898371]
  18. Sakai O, Uchida T, Imai H, Ueta T (2016) Glutathione peroxidase 4 plays an important role in oxidative homeostasis and wound repair in corneal epithelial cells. Febs Open Bio 6:1238–1247 [PMID: 28203523]
  19. Zhang FL, Xiao Y, Huang ZZ, Wang YY, Wan WG, Zou HJ, Wang B, Qiu XY, Yang X (2024) Upregulation of GPX4 drives ferroptosis resistance in scleroderma skin fibroblasts. Free Radical Bio Med 221:23-30
  20. Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, Viswanathan SR, Chattopadhyay S, Tamayo P, Yang WS, Rees MG, Chen SX, Boskovic ZV, Javaid S, Huang C, Wu XY, Tseng YY, Roider EM, Gao D, Cleary JM, Wolpin BM, Mesirov JP, Haber DA, Engelman JA, Boehm JS, Kotz JD, Hon CS, Chen Y, Hahn WC, Levesque MP, Doench JG, Berens ME, Shamji AF, Clemons PA, Stockwell BR, Schreiber SL (2017) Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547:453–457 [PMID: 28678785]
  21. Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, Galeas J, Dhruv HD, Berens ME, Schreiber SL, McCormick F, McManus MT (2017) Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551:247–250 [PMID: 29088702]
  22. Li PC, Jiang MD, Li KT, Li H, Zhou YZ, Xiao XY, Xu Y, Krishfield S, Lipsky PE, Tsokos GC, Zhang X (2021) Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol 22:1107–1117 [PMID: 34385713]
  23. Armstrong AW, Read C (2020) Pathophysiology, clinical presentation, and treatment of Psoriasis A Review. Jama-J Am Med Assoc 323:1945–1960 [DOI: 10.1001/jama.2020.4006]
  24. Schwärzler J, Mayr L, Radlinger B, Grabherr F, Philipp M, Texler B, Grander C, Ritsch A, Hunjadi M, Enrich B, Salzmann K, Ran QT, Huber LA, Tilg H, Kaser S, Adolph TE (2022) Adipocyte GPX4 protects against inflammation, hepatic insulin resistance and metabolic dysregulation. Int J Obes 46:951–959 [DOI: 10.1038/s41366-022-01064-9]
  25. Li C, Deng XB, Xie XW, Liu Y, Angeli JPF, Lai LH (2018) Activation of glutathione peroxidase 4 as a novel anti-inflammatory strategy. Front Pharmacol 9. https://doi.org/10.3389/fphar.2018.01120
  26. Bi ML, Li DY, Zhang J (2023) Research progress and insights on the role of ferroptosis in wound healing. Int Wound J 20:2473–2481
  27. Hounye AH, Wan M, Wang Z, Qi M, Zhang JL, Hou MZ (2022) Comprehensive analysis of the expression and prognosis for GPXs in cutaneous melanoma using bioinformatics analysis. Biomed Signal Proces 77. https://doi.org/10.1016/j.bspc.2022.103804
  28. Li SW, Li Y, Wu ZY, Wu ZM, Fang HJ (2021) Diabetic ferroptosis plays an important role in triggering on inflammation in diabetic wound. Am J Physiol-Endoc M 321:E509–E520
  29. Sun JC, Xie XY, Song YY, Sun TJ, Liu XZ, Yuan HG, Shen CN (2024) Selenomethionine in gelatin methacryloyl hydrogels: modulating ferroptosis to attenuate skin aging. Bioact Mater 35:495–516 [PMID: 38404642]
  30. Feng ZA, Qin YF, Huo F, Jian Z, Li XM, Geng JJ, Li Y, Wu J (2022) NMN recruits GSH to enhance GPX4-mediated ferroptosis defense in UV irradiation induced skin injury. Bba-Mol Basis Dis 1868. https://doi.org/10.1016/j.bbadis.2021.166287
  31. Zhang FL, Xiao Y, Huang ZZ, Wang YY, Wan WG, Zou HJ, Wang B, Qiu XY, Yang X (2024) Upregulation of GPX4 drives ferroptosis resistance in scleroderma skin fibroblasts. Free Radical Bio Med 221:23–30 [DOI: 10.1016/j.freeradbiomed.2024.05.013]
  32. Yao Y, Chen Z, Zhang H, Chen CL, Zeng M, Yunis J, Wei YB, Wan YN, Wang NA, Zhou MZ, Qiu C, Zeng QX, Ong HS, Wang H, Makota FV, Yang Y, Yang ZH, Wang N, Deng J, Shen C, Xia Y, Yuan L, Lian ZQ, Deng YK, Guo CL, Huang AO, Zhou PC, Shi HB, Zhang WT, Yi HL, Li DM, Xia M, Fu J, Wu N, de Haan JB, Shen N, Zhang WH, Liu Z, Yu D (2021) Selenium-GPX4 axis protects follicular helper T cells from ferroptosis. Nat Immunol 22:1127–1139 [PMID: 34413521]
  33. Alim I, Caulfield JT, Chen YX, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai YX, Sensing LH, Ste Marie EJ, Hondal RJ, Mukherjee S, Cave JW, Sagdullaev BT, Karuppagounder SS, Ratan RR (2019) Selenium Drives a Transcriptional Adaptive Program to Block Ferroptosis and Treat Stroke, Cell 177:1262–1279.e1225
  34. Luo ZY, Zheng QF, Ye SZ, Li YG, Chen JY, Fan CJ, Chen JN, Lei YX, Liao Q, Xi Y (2024) HMGA2 alleviates ferroptosis by promoting GPX4 expression in pancreatic cancer cells. Cell Death Disease 15. https://doi.org/10.1038/s41419-024-06592-y
  35. Ruan BJ, Dong J, Wei FH, Huang ZQ, Yang B, Zhang LJ, Li CL, Dong H, Cao WS, Wang HW, Wang YX (2024) DNMT aberration-incurred GPX4 suppression prompts osteoblast ferroptosis and osteoporosis. Bone Res 12. https://doi.org/10.1038/s41413-024-00365-1
  36. Ufer C, Wang CC, Fähling M, Schiebel H, Thiele BJ, Billett EE, Kuhn H, Borchert A (2008) Translational regulation of glutathione peroxidase 4 expression through guanine-rich sequence-binding factor 1 is essential for embryonic brain development. Gene Dev 22:1838–1850 [PMID: 18593884]
  37. Kerins MJ, Milligan J, Wohlschlegel JA, Ooi A (2018) Fumarate hydratase inactivation in hereditary leiomyomatosis and renal cell cancer is synthetic lethal with ferroptosis induction. Cancer Sci 109:2757–2766 [PMID: 29917289]
  38. Hassannia B, Wiernicki B, Ingold I, Qu F, Van Herck S, Tyurina YY, Bayir H, Abhari BA, Angeli JPF, Choi SM, Meul E, Heyninck K, Declerck K, Chirumamilla CS, Lahtela-Kakkonen M, Van Camp G, Krysko DV, Ekert PG, Fulda S, De Geest BG, Conrad M, Kagan VE, Vanden Berghe W, Vandenabeele P (2018) Vanden Berghe, Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest 128:3341–3355 [PMID: 29939160]
  39. NagDas SK, Winfrey VP, Olson GE (2005) Tyrosine phosphorylation generates multiple isoforms of the mitochondrial capsule protein, phospholipid hydroperoxide glutathione peroxidase (PHGPx), during hamster sperm capacitation. Biol Reprod 72:164–171 [PMID: 15385412]
  40. Wang GG, Wu YB, Zhou T, Guo YS, Zheng B, Wang J, Bi Y, Liu FJ, Zhou ZM, Guo XJ, Sha JH (2013) Mapping of the N-Linked glycoproteome of human spermatozoa. J Proteome Res 12:5750–5759 [PMID: 24191733]
  41. Yang L, Chen X, Yang QQ, Chen JH, Huang QT, Yao LY, Yan D, Wu JW, Zhang PQ, Tang DL, Zhong NS, Liu JB (2020) Broad spectrum deubiquitinase inhibition induces both apoptosis and ferroptosis in cancer cells. Front Oncol 10. https://doi.org/10.3389/fonc.2020.00949
  42. Ding YH, Chen XP, Liu C, Ge WZ, Wang Q, Hao X, Wang MM, Chen Y, Zhang Q (2021) Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. J Hematol Oncol 14. https://doi.org/10.1186/s13045-020-01016-8
  43. Zhang JF, Qiu QH, Wang HY, Chen C, Luo DW (2021) TRIM46 contributes to high glucose-induced ferroptosis and cell growth inhibition in human retinal capillary endothelial cells by facilitating GPX4 ubiquitination. Exp Cell Res 407. https://doi.org/10.1016/j.yexcr.2021.112800
  44. Wang ZJ, Xia Y, Wang Y, Zhu RQ, Li HB, Liu Y, Shen N (2023) The E3 ligase TRIM26 suppresses ferroptosis through catalyzing K63-linked ubiquitination of GPX4 in glioma. Cell Death Disease 14. https://doi.org/10.1038/s41419-023-06222-z
  45. Sun XL, Huang N, Li P, Dong XY, Yang JH, Zhang XM, Zong WX, Gao SL, Xin H (2023) TRIM21 ubiquitylates GPX4 and promotes ferroptosis to aggravate ischemia/reperfusion-induced acute kidney injury. Life Sci 321. https://doi.org/10.1016/j.lfs.2023.121608
  46. Li JB, Liu J, Zhou Z, Wu RL, Chen X, Yu CH, Stockwell B, Kroemer G, Kang R, Tang DL (2023) Tumor-specific GPX4 degradation enhances ferroptosis-initiated antitumor immune response in mouse models of pancreatic cancer. Sci Transl Med 15. https://doi.org/10.1126/scitranslmed.adg3049
  47. Meng CJ, Zhan J, Chen DL, Shao GZ, Zhang HQ, Gu W, Luo JY (2021) The deubiquitinase USP11 regulates cell proliferation and ferroptotic cell death via stabilization of NRF2 USP11 deubiquitinates and stabilizes NRF2. Oncogene 40:1706–1720 [PMID: 33531626]
  48. Chu LK, Cao X, Wan L, Diao Q, Zhu Y, Kan Y, Ye LL, Mao YM, Dong XQ, Xiong QW, Fu MC, Zhang T, Zhou HT, Cai SZ, Ma ZR, Hsu SW, Wu R, Chen CH, Yan XM, Liu J (2023) Autophagy of OTUD5 destabilizes GPX4 to confer ferroptosis-dependent kidney injury. Nat Commun 14. https://doi.org/10.1038/s41467-023-44228-5
  49. Yao LY, Yan D, Jiang BY, Xue Q, Chen X, Huang QT, Qi L, Tang DL, Chen X, Liu JB (2023) Plumbagin is a novel GPX4 protein degrader that induces apoptosis in hepatocellular carcinoma cells. Free Radical Bio Med 203:1–10 [DOI: 10.1016/j.freeradbiomed.2023.03.263]
  50. Li D.B., Wang Y.H., Dong C, Chen T, Dong A.Q., Ren J.Y., Li W.K., Shu G.G., Yang J.Y., Shen W.H., Qin L., Hu L., Zhou J (2023) CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1. Oncogene 42:83–98
  51. Lia H, Suna YS, Yao YM, Ke SW, Zhang NN, Xiong WJ, Shi J, He C, Xiao XL, Yu HS, Dai PP, Xiang BL, Xing XX, Xu GS, Song WJ, Song JQ, Zhang JF (2024) USP8-governed GPX4 homeostasis orchestrates ferroptosis and cancer immunotherapy. P Natl Acad Sci USA 121. https://doi.org/10.1073/pnas.2315541121
  52. Xu CJ, Xiao ZH, Wang J, Lai HL, Zhang T, Guan ZL, Xia M, Chen MX, Ren LL, He YF, Gao YQ, Zhao CS (2021) Discovery of a potent glutathione peroxidase 4 inhibitor as a selective ferroptosis inducer. J Med Chem 64:13312–13326 [PMID: 34506134]
  53. Moosmayer D, Hilpmann A, Hoffmann J, Schnirch L, Zimmermann K, Badock V, Furst L, Eaton JK, Viswanathan VS, Schreiber SL, Gradl S, Hillig RC (2021) Crystal structures of the selenoprotein glutathione peroxidase 4 in its apo form and in complex with the covalently bound inhibitor ML162. Acta Crystallogr D 77:237–248 [DOI: 10.1107/S2059798320016125]
  54. Eaton JK, Furst L, Ruberto RA, Moosmayer D, Hilpmann A, Ryan MJ, Zimmermann K, Cai LKL, Niehues M, Badock V, Kramm A, Chen SX, Hillig RC, Clemons PA, Gradl S, Montagnon C, Lazarski KE, Christian S, Bajrami B, Neuhaus R, Eheim AL, Viswanathan VS, Schreiber SL (2020) Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat Chem Biol 16:497–506 [PMID: 32231343]
  55. Eaton JK, Ruberto RA, Kramm A, Viswanathan VS, Schreiber SL (2019) Diacylfuroxans are masked Nitrile Oxides that inhibit GPX4 covalently. J Am Chem Soc 141:20407–20415 [PMID: 31841309]
  56. Liu HR, Forouhar F, Lin ANJ, Wang Q, Polychronidou V, Soni RK, Xia X, Stockwell BR (2022) Small-molecule allosteric inhibitors of GPX4. Cell Chem Biology 29:1680–1693e1689 [DOI: 10.1016/j.chembiol.2022.11.003]
  57. Chang MT, Tsai LC, Nakagawa-Goto K, Lee KH, Shyur LF (2022) Phyto-sesquiterpene lactones DET and DETD-35 induce ferroptosis in vemurafenib sensitive and resistant melanoma via GPX4 inhibition and metabolic reprogramming. Pharmacol Res 178. https://doi.org/10.1016/j.phrs.2022.106148
  58. Sun YD, Berleth N, Wu WX, Schlütermann D, Deitersen J, Stuhldreier F, Berning L, Friedrich A, Akgün S, Mendiburo MJ, Wesselborg S, Conrad M, Berndt C, Stork B (2021) Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells. Cell Death Disease 12. https://doi.org/10.1038/s41419-021-04306-2
  59. Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, Brown LM, Valenzuela CA, Wolpaw AJ, Stockwell BR (2016) Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol 12:497–503 [PMID: 27159577]
  60. Zhang W, Jiang BP, Liu YX, Xu L, Wan M (2022) Bufotalin induces ferroptosis in non-small cell lung cancer cells by facilitating the ubiquitination and degradation of GPX4. Free Radical Bio Med 180:75–84 [DOI: 10.1016/j.freeradbiomed.2022.01.009]
  61. Wang C, Zheng CX, Wang H, Shui SF, Jin HW, Liu GQ, Xu FR, Liu ZM, Zhang LR, Sun D, Xu P (2023) Dual degradation mechanism of GPX4 degrader in induction of ferroptosis exerting anti-resistant tumor effect. Eur J Med Chem 247. https://doi.org/10.1016/j.ejmech.2022.115072
  62. Zheng CX, Wang C, Sun D, Wang H, Li BR, Liu GQ, Liu ZM, Zhang LR, Xu P (2023) Structure-activity relationship study of RSL3-based GPX4 degraders and its potential noncovalent optimization. Eur J Med Chem 255. https://doi.org/10.1016/j.ejmech.2023.115393
  63. Luo TL, Zheng QZ, Shao LH, Ma TY, Mao LQ, Wang M (2022) Intracellular delivery of glutathione peroxidase degrader induces ferroptosis in vivo. Angew Chem Int Edit 61. https://doi.org/10.1002/anie.202206277
  64. Zhu LQ, Hu SQ, Yan XQ, Zeng Q, Zhang B, Jiang LY, Yao SQ, Ge JY (2023) Ugi reaction-assisted assembly of covalent PROTACs against glutathione peroxidase 4. Bioorg Chem 134. https://doi.org/10.1016/j.bioorg.2023.106461
  65. Wang H, Wang C, Li BR, Zheng CX, Liu GQ, Liu ZM, Zhang LR, Xu P (2023) Discovery of ML210-Based glutathione peroxidase 4 (GPX4) degrader inducing ferroptosis of human cancer cells. Eur J Med Chem 254. https://doi.org/10.1016/j.ejmech.2023.115343
  66. Li C, Deng XB, Zhang WL, Xie XW, Conrad M, Liu Y, Angeli JPF, Lai LH (2019) Novel allosteric activators for Ferroptosis Regulator Glutathione Peroxidase 4. J Med Chem 62:266–275 [PMID: 29688708]
  67. Baruah P, Moorthy H, Ramesh M, Padhi D, Govindaraju T (2023) A natural polyphenol activates and enhances GPX4 to mitigate amyloid-β induced ferroptosis in Alzheimer’s disease. Chem Sci 14:9427–9438 [PMID: 37712018]
  68. Liu JP, Cen SY, Xue Z, Wang TX, Gao Y, Zheng J, Zhang C, Hu JC, Nie SY, Xiong Y, Guan KL, Yuan HX (2022) A class of Disulfide compounds that suppress ferroptosis by stabilizing GPX4. Acs Chem Biol 17:3389–3406 [PMID: 36446024]
  69. Xu P, Wang Y, Deng Z, Tan ZB, Pei XJ (2022) MicroRNA-15a promotes prostate cancer cell ferroptosis by inhibiting GPX4 expression. Oncol Lett 23. https://doi.org/10.3892/ol.2022.13186
  70. Liu LR, Yao HH, Zhou X, Chen JJ, Chen GL, Shi XY, Wu GT, Zhou GQ, He SB (2022) MiR-15a-3p regulates ferroptosis via targeting glutathione peroxidase GPX4 in colorectal cancer. Mol Carcinogen 61:301–310 [DOI: 10.1002/mc.23367]
  71. Xu ZQ, Chen LH, Wang CS, Zhang LQ, Xu WH (2021) MicroRNA-1287-5p promotes ferroptosis of osteosarcoma cells through inhibiting GPX4. Free Radical Res 55:1119–1129 [DOI: 10.1080/10715762.2021.2024816]
  72. Deng SH, Wu DM, Li L, Liu T, Zhang T, Li J, Yu Y, He M, Zhao YY, Han R, Xu Y (2021) Mir-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. Biochem Bioph Res Co 549:54–60 [DOI: 10.1016/j.bbrc.2021.02.077]
  73. Liao ZL, Ni ZH, Cao J, Liao J, Zhu HQ, Zhong XT, Cao G, Huang L, Li XY, Jiang GJ, Pei F (2023) LncRNA MALAT1-targeting antisense oligonucleotide ameliorates the AngII-induced vascular smooth muscle cell proliferation and migration via Nrf2/GPX4 antioxidant pathway. J Cardiovasc Pharmacol 84:515–527
  74. Zhu CT, Chen B, He X, Li WY, Wang SY, Zhu X, Li Y, Wan P, Li XL (2024) LncRNA MEG3 suppresses erastin-induced ferroptosis of chondrocytes via regulating miR-885-5p/SLC7A11 axis. Mol Biol Rep 51. https://doi.org/10.1007/s11033-023-09095-9
  75. Jiang JN, Gao HJ, Zhou WD, Cai HX, Liao LM, Wang CH (2023) Circular RNA HIPK3 facilitates ferroptosis in gestational diabetes mellitus by regulating glutathione peroxidase 4 DNA methylation. J Gene Med 25. https://doi.org/10.1002/jgm.3526
  76. Li ZJ, Luo Y, Wang CB, Han DX, Sun WP (2023) Circular RNA circBLNK promotes osteosarcoma progression and inhibits ferroptosis in osteosarcoma cells by sponging mir-188-3p and regulating GPX4 expression. Oncol Rep 50. https://doi.org/10.3892/or.2023.8629
  77. Wang M, Li SS, Wang YL, Cheng H, Su JJ, Li QL (2020) Gambogenic acid induces ferroptosis in melanoma cells undergoing epithelial-to-mesenchymal transition. Toxicol Appl Pharm 401. https://doi.org/10.1016/j.taap.2020.115110
  78. Liu LH, Lian N, Shi LQ, Hao ZM, Chen K (2023) Ferroptosis: mechanism and connections with cutaneous diseases. Front Cell Dev Biology 10. https://doi.org/10.3389/fcell.2022.1079548
  79. Vats K, Tian H, Singh K, Tyurina YY, Sparvero LJ, Tyurin VA, Kruglov O, Chang A, Wang J, Green F, Samovich SN, Zhang J, Chattopadhyay A, Murray N, Shah VK, Mathers AR, Chandran UR, Pilewski JM, Kellum JA, Wenzel SE, Bayır H, Kagan VE, Bunimovich YL (2025) Ferroptosis of select skin epithelial cells initiates and maintains chronic systemic immune-mediated psoriatic disease. J Clin Investig 135. https://doi.org/10.1172/JCI183219
  80. Mazhar M, Din AU, Ali H, Yang GQ, Ren W, Wang L, Fan XH, Yang SJ (2021) Implication of ferroptosis in aging. Cell Death Discovery 7. https://doi.org/10.1038/s41420-021-00553-6
  81. Guinot C, Malvy DJM, Ambroisine L, Latreille J, Mauger E, Tenenhaus M, Morizot F, Lopez S, Le Fur I, Tschachler E (2002) Relative contribution of intrinsic vs extrinsic factors to skin aging as determined by a validated skin age score. Arch Dermatol 138:1454–1460 [PMID: 12437451]
  82. Zhou DL, Liang Q, Ge XY, Xu J (2024) Allogeneic platelet-rich plasma inhibits ferroptosis in promoting wound repair of type 2 diabetic ulcers. Free Radical Bio Med 215:37–47 [DOI: 10.1016/j.freeradbiomed.2024.02.020]
  83. Lu W, Li XY, Wang ZY, Zhao CB, Li Q, Zhang L, Yang SF (2024) Mesenchymal stem cell-derived extracellular vesicles accelerate diabetic wound healing by inhibiting NET-induced ferroptosis of endothelial cells. Int J Biol Sci 20:3515–3529 [PMID: 38993565]

Grants

  1. 82170172/National Natural Science Foundation of China
  2. 82170145/National Natural Science Foundation of China
  3. ZY (2021-2023)-0208/Shanghai Municipal Commission of Health and Family Planning

MeSH Term

Humans
Phospholipid Hydroperoxide Glutathione Peroxidase
Homeostasis
Oxidative Stress
Skin
Ferroptosis
Lipid Peroxidation
Animals
Skin Diseases
Protein Processing, Post-Translational

Chemicals

Phospholipid Hydroperoxide Glutathione Peroxidase

Word Cloud

Created with Highcharts 10.0.0GPX4skinoxidativediseasesrolestressinflammationdiseasehomeostasisGlutathioneperoxidase4damagelipidperoxidationconditionsmaintainingSkincrucialantioxidantenzymeplaysvitalprotectingcellscontextserveskeyregulatorsignificantfeaturesvariouspreventingmembraneintegrityactssafeguardcelldeathpathwaysparticularlyferroptosisDysregulationdermatitispsoriasiscancerlinkedheightenedtissueUnderstandingintricateinteractionspathogenesiscanaideffectivelytargetingleadingpromisingtherapeuticinterventionsreviewsummarizesinvolvementproposingstrategiestargetincludingpost-translationalmodificationsInvestigateprecisemechanisminfluencesonsetutilizeagonistsinhibitorspotentialtreatmentsDouble-edgedswordeffectFerroptosis

Similar Articles

Cited By