Using a multi-strain infectious disease model with physical information neural networks to study the time dependence of SARS-CoV-2 variants of concern.

Wenxuan Li, Xu Chen, Suli Liu, Chiyu Zhang, Guyue Liu
Author Information
  1. Wenxuan Li: School of Mathematics, Jilin University, Changchun, Jilin, China.
  2. Xu Chen: School of Artificial Intelligence, Jilin University, Changchun, Jilin, China.
  3. Suli Liu: School of Mathematics, Jilin University, Changchun, Jilin, China. ORCID
  4. Chiyu Zhang: School of Mathematics, Jilin University, Changchun, Jilin, China.
  5. Guyue Liu: School of Mathematics, Jilin University, Changchun, Jilin, China.

Abstract

With the ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its increasing adaptation to humans, several variants of concern (VOCs) and variants of interest (VOIs) have been identified since late 2020. These include Alpha, Beta, Gamma, Delta, Omicron parent lineage, and other variants. These variants may show distinct levels of virulence, antigenicity, and infectivity, which require specific defense and control measures. In this study, we propose an [Formula: see text] infectious disease model to simulate the spread of SARS-CoV-2 variants among the human population. We combine the proposed epidemic model and reported infected data of variants with physical information neural networks (PINNs) to develop a novel mechanism called VOCs-informed neural network (VOCs-INN). In our experiments, we found that this algorithm can accurately fit the reported data of the British Columbia (BC) province and its five internal health agencies in Canada. Furthermore, it can simulate observed or unobserved dynamics, infer time-dependent parameters, and enable short-term predictions. The experimental results also reveal variations in the intensity of control strategies implemented across these regions. VOCs-INN performs well in fitting and forecasting when analyzing long-term or multi-wave data.

References

  1. PLoS One. 2022 Jan 28;17(1):e0262708 [PMID: 35089976]
  2. Lancet Infect Dis. 2023 Mar;23(3):280-281 [PMID: 36736338]
  3. Eng Appl Artif Intell. 2023 Jun;122:106157 [PMID: 36968247]
  4. Nat Comput Sci. 2021 Nov;1(11):744-753 [PMID: 38217142]
  5. Chaos. 2022 Jul;32(7):071101 [PMID: 35907723]
  6. Lancet Infect Dis. 2023 Jun;23(6):655-656 [PMID: 37148902]
  7. Chaos Solitons Fractals. 2020 Nov;140:110212 [PMID: 32839642]
  8. J Big Data. 2021;8(1):18 [PMID: 33457181]
  9. IEEE Rev Biomed Eng. 2022;15:325-340 [PMID: 33769936]
  10. Chaos Solitons Fractals. 2020 Oct;139:110017 [PMID: 32572310]
  11. Bull Math Biol. 2022 Aug 27;84(10):108 [PMID: 36029391]
  12. Virol J. 2023 Apr 2;20(1):59 [PMID: 37009864]
  13. Chaos Solitons Fractals. 2020 Nov;140:110121 [PMID: 32834633]
  14. Infect Dis Model. 2022 Dec;7(4):581-596 [PMID: 36097594]
  15. Comput Biol Med. 2023 May;158:106693 [PMID: 36996662]
  16. J Theor Biol. 2023 May 21;565:111468 [PMID: 36940811]
  17. Comput Biol Med. 2023 Oct;165:107431 [PMID: 37696183]
  18. PLoS Comput Biol. 2023 Oct 18;19(10):e1011535 [PMID: 37851640]
  19. Math Biosci Eng. 2021 Nov 5;18(6):9775-9786 [PMID: 34814368]
  20. Chaos Solitons Fractals. 2020 Nov;140:110214 [PMID: 32839643]

MeSH Term

Humans
COVID-19
SARS-CoV-2
Neural Networks, Computer
Computational Biology
Algorithms
British Columbia
Epidemiological Models
Computer Simulation

Word Cloud

Created with Highcharts 10.0.0variantsSARS-CoV-2modeldataneuralconcerncontrolstudyinfectiousdiseasesimulatereportedphysicalinformationnetworksVOCs-INNcanongoingevolutionsevereacuterespiratorysyndromecoronavirus2increasingadaptationhumansseveralVOCsinterestVOIsidentifiedsincelate2020includeAlphaBetaGammaDeltaOmicronparentlineagemayshowdistinctlevelsvirulenceantigenicityinfectivityrequirespecificdefensemeasurespropose[Formula:seetext]spreadamonghumanpopulationcombineproposedepidemicinfectedPINNsdevelopnovelmechanismcalledVOCs-informednetworkexperimentsfoundalgorithmaccuratelyfitBritishColumbiaBCprovincefiveinternalhealthagenciesCanadaFurthermoreobservedunobserveddynamicsinfertime-dependentparametersenableshort-termpredictionsexperimentalresultsalsorevealvariationsintensitystrategiesimplementedacrossregionsperformswellfittingforecastinganalyzinglong-termmulti-waveUsingmulti-straintimedependence

Similar Articles

Cited By