Anemonefish use sialic acid metabolism as Trojan horse to avoid giant sea anemone stinging.

Natacha Roux, Cl��ment Delannoy, Shin-Yi Yu, Saori Miura, Lilian Carlu, Laurence Besseau, Takahiro Nakagawa, Chihiro Sato, Ken Kitajima, Yann Guerardel, Vincent Laudet
Author Information
  1. Natacha Roux: Computational Neuroethology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Okinawa, 904-0495, Japan.
  2. Cl��ment Delannoy: Universit�� de Lille, CNRS, UMR 8576 - UGSF - Unit�� de Glycobiologie Structurale et Fonctionnelle, Lille, 59000, France.
  3. Shin-Yi Yu: Universit�� de Lille, CNRS, UMR 8576 - UGSF - Unit�� de Glycobiologie Structurale et Fonctionnelle, Lille, 59000, France.
  4. Saori Miura: Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan.
  5. Lilian Carlu: Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan.
  6. Laurence Besseau: Sorbonne Universit��, CNRS, Biologie Int��grative des Organismes Marins, BIOM, Observatoire oc��anologique de Banyuls-sur-Mer, Banyuls-sur-Mer, 66650, France.
  7. Takahiro Nakagawa: Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 4648601, Japan.
  8. Chihiro Sato: Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 4648601, Japan.
  9. Ken Kitajima: Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 4648601, Japan.
  10. Yann Guerardel: Universit�� de Lille, CNRS, UMR 8576 - UGSF - Unit�� de Glycobiologie Structurale et Fonctionnelle, Lille, 59000, France. yann.guerardel@univ-lille.fr.
  11. Vincent Laudet: Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan. vincent.laudet@oist.jp.

Abstract

BACKGROUND: Anemonefish association with sea anemones is a prime example of mutualistic symbiosis. These fish live inside the sea anemone, benefitting from the protection of its toxic nematocysts, and in return, protect the anemone from its own predators. How anemonefish manage to avoid their host toxic stings remains unclear. One hypothesis suggests that low levels of sialic acids in anemonefish mucus prevent nematocyst discharge.
RESULTS: This study verified four predictions: (i) anemonefish mucus has lower sialic acid levels than non-symbiotic damselfish; (ii) this reduction is specific to mucus; (iii) during development, sialic acid levels inversely correlate with protection; (iv) sea anemone mucus has minimal sialic acids.
CONCLUSIONS: We conclude that anemonefish regulates the level of sialic acids in their mucus to avoid nematocyst discharge. We also highlight several genes implicated in sialic acid removal that could explain the protection mechanisms in place. This mechanism, potentially used by Dascyllus trimaculatus juveniles, suggests a convergent strategy for mutualistic associations with sea anemones.

Keywords

References

  1. Nat Commun. 2018 Nov 7;9(1):4647 [PMID: 30405127]
  2. Front Immunol. 2020 Mar 24;11:512 [PMID: 32265939]
  3. Zoolog Sci. 2022 Aug;39(4): [PMID: 35960028]
  4. Cell Rep. 2023 Jul 25;42(7):112661 [PMID: 37347665]
  5. Curr Opin Struct Biol. 2009 Oct;19(5):507-14 [PMID: 19699080]
  6. Sci Rep. 2019 Dec 20;9(1):19491 [PMID: 31862916]
  7. Curr Biol. 2024 Mar 11;34(5):R193-R194 [PMID: 38471445]
  8. Dev Dyn. 2019 Jul;248(7):545-568 [PMID: 31070818]
  9. Toxicon X. 2022 Jan 31;13:100094 [PMID: 35146416]
  10. Glycoconj J. 2000 Jul-Sep;17(7-9):485-99 [PMID: 11421344]
  11. J Exp Biol. 2001 Jun;204(Pt 11):2011-20 [PMID: 11441042]
  12. ACS Chem Biol. 2010 Feb 19;5(2):163-76 [PMID: 20020717]
  13. Cell Res. 2005 Jul;15(7):483-94 [PMID: 16045811]
  14. PLoS Genet. 2019 Jun 24;15(6):e1008189 [PMID: 31233506]
  15. Toxicon. 2009 Dec 15;54(8):1054-64 [PMID: 19268491]
  16. Front Mol Biosci. 2021 Nov 10;8:778383 [PMID: 34859056]
  17. Toxicon. 2009 Dec 15;54(8):1046-53 [PMID: 19268492]
  18. J Exp Zool B Mol Dev Evol. 2021 Jun;336(4):376-385 [PMID: 33539680]
  19. Genome Biol Evol. 2019 Mar 1;11(3):869-882 [PMID: 30830203]
  20. Pigment Cell Melanoma Res. 2019 May;32(3):391-402 [PMID: 30633441]
  21. BMC Biol. 2020 Sep 9;18(1):121 [PMID: 32907568]
  22. Proc (Bayl Univ Med Cent). 2000 Jul;13(3):217-26 [PMID: 16389385]
  23. Chem Rev. 2002 Feb;102(2):439-69 [PMID: 11841250]
  24. Ecol Lett. 2019 Feb;22(2):256-264 [PMID: 30481409]
  25. Biochem Biophys Res Commun. 1988 May 31;153(1):172-6 [PMID: 3377785]
  26. Biol Bull. 2004 Apr;206(2):113-20 [PMID: 15111366]
  27. Mol Phylogenet Evol. 2010 Sep;56(3):868-77 [PMID: 20457262]
  28. Proc Natl Acad Sci U S A. 2021 Jun 8;118(23): [PMID: 34031155]
  29. PLoS One. 2014 May 30;9(5):e98449 [PMID: 24878777]
  30. J Proteome Res. 2019 Apr 5;18(4):1760-1773 [PMID: 30848132]
  31. J Exp Zool. 1996 Aug 15;275(6):444-51 [PMID: 8795288]
  32. Toxicon. 2009 Dec 15;54(8):1071-4 [PMID: 19268681]
  33. Appl Microbiol Biotechnol. 2012 May;94(4):887-905 [PMID: 22526796]

Grants

  1. FY2023/J-GlycoNet Joint Research Program
  2. Shinka Grant/Okinawa Institute of Science and Technology

MeSH Term

Animals
Sea Anemones
N-Acetylneuraminic Acid
Symbiosis
Perciformes
Mucus
Nematocyst

Chemicals

N-Acetylneuraminic Acid

Word Cloud

Created with Highcharts 10.0.0sialicseaanemonemucusacidanemonefishAnemonefishprotectionavoidlevelsacidsanemonesmutualistictoxicsuggestsnematocystdischargeBACKGROUND:associationprimeexamplesymbiosisfishliveinsidebenefittingnematocystsreturnprotectpredatorsmanagehoststingsremainsunclearOnehypothesislowpreventRESULTS:studyverifiedfourpredictions:lowernon-symbioticdamselfishiireductionspecificiiidevelopmentinverselycorrelateivminimalCONCLUSIONS:concluderegulateslevelalsohighlightseveralgenesimplicatedremovalexplainmechanismsplacemechanismpotentiallyusedDascyllustrimaculatusjuvenilesconvergentstrategyassociationsusemetabolismTrojanhorsegiantstingingGiantSialic

Similar Articles

Cited By