Lipopeptide iturin C from endophytic Bacillus sp. effectively inhibits biofilm formation and prevents the adhesion of topical and food-borne pathogens in vitro and on biomedical devices.

Rajsekhar Adhikary, Pulak Kumar Maiti, Narendranath Ghosh, Biplab Rajbanshi, Mahendra Nath Roy, Sukhendu Mandal, Vivekananda Mandal
Author Information
  1. Rajsekhar Adhikary: Plant and Microbial Physiology and Biochemistry Laboratory, Department of Botany, University of Gour Banga, P.O. - Mokdumpur, Malda, W.B., 732103, India.
  2. Pulak Kumar Maiti: Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India.
  3. Narendranath Ghosh: Department of Chemistry, University of Gour Banga, P.O. - Mokdumpur, Malda, W.B., 732103, India.
  4. Biplab Rajbanshi: Department of Chemistry, University of North Bengal, Darjeeling, 734013, India.
  5. Mahendra Nath Roy: Department of Chemistry, University of North Bengal, Darjeeling, 734013, India.
  6. Sukhendu Mandal: Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700 019, India. sukhendu1@hotmail.com. ORCID
  7. Vivekananda Mandal: Plant and Microbial Physiology and Biochemistry Laboratory, Department of Botany, University of Gour Banga, P.O. - Mokdumpur, Malda, W.B., 732103, India. mandalvivek@gmail.com. ORCID

Abstract

Iturin, a structurally cyclic heptapeptides with a number of homologous derivatives has broad-spectrum antimicrobial and antibiofilm properties. The present study elucidates the structure and antimicrobial efficacy of iturin C biosurfactant (BS) produced by the endophytic bacterium Bacillus sp. LLB-04. Bacillus sp. LLB-04 was isolated from the leaves of hemiparasite Scurrula parasitica L. during the winter season. The biosurfactant was produced in a static batch culture of 120 h using Nutrient Broth (NB) medium and was extracted by a series of solvent systems. The BS was purified by solvent fractionation and preparative High-Performance Liquid Chromatography (HPLC) method, and then it was structurally characterized through various analytical methods. Its antimicrobial and antibiofilm activities were tested against 0, to 18 h old topical and food-borne pathogens. Furthermore, the cellular aggregation and bacterial cell adhesion on polystyrene and urethral catheters were checked at the Biofilm inhibitory concentration (BIC). The cell line toxicity of BS (0-1.568 mg/ml) was tested against the human embryonic lung tissue L-132 and human alveolar epithelial cancer cell line, and the in silico mode of action was studied using standard methods. From the spectroscopic studies of 96 h culture harvested BS revealed that Bacillus sp. LLB-04 (GenBank Accession No.: MF037706) produced the BS as iturin C. The BS had broad-spectrum antimicrobial with minimum inhibitory concentration (MIC) values ranging from 0.1 to 1.6 mg/ml and an average biofilm inhibition concentration (BIC) of 0.8-1.6 mg/ml in 18 h old cells where biofilm formation was inhibited up to 46.4 times at 1.6 mg/ml concentration. It could also destabilize 40-48 h old preformed biofilm and had a synergistic response with streptomycin (Bacillus subtilis MTCC 411, Escherichia coli MTCC 730), ciprofloxacin (B. subtilis MTCC 411, E. coli MTCC 730), and vancomycin (Staphylococcus epidermidis MTCC 3086, B. subtilis MTCC 411). It had antiproliferative activity (0.1-0.8 mg/ml) on cancer cell lines. In-silico protein-ligand interactions predicted that it could interact with different membrane proteins of topical and food-borne pathogens. Thus, the study revealed for the first time that the endophytic Bacillus sp. could be exploited for large-scale production of iturin C that could be used in combating biofilm formation and cellular adhesion of topical and food-borne pathogens.

Keywords

References

  1. Aamir M, Singh VK, Dubey MK, Meena M, Kashyap SP, Katari SK, Upadhyay RS, Umamaheswari A, Singh S (2018) In silico prediction, characterization, molecular docking, and dynamic studies on fungal SDRs as novel targets for searching potential fungicides against Fusarium wilt in tomato. Front Pharmacol 9:1038. https://doi.org/10.3389/fphar.2018.01038 [DOI: 10.3389/fphar.2018.01038]
  2. Adhikary R, Kundu S, Maiti PK, Mitra PK, Mandal S, Mandal V (2020) Effect of different stimuli on twitching behavior of endophytic bacteria isolated from Loranthus sp. Jacq. Ant van Leeuwen 113(10):1489–1505. https://doi.org/10.1007/s10482-020-01458-7 [DOI: 10.1007/s10482-020-01458-7]
  3. Ahn SJ, Wen ZT, Brady LJ, Burne RA (2008) Characteristics of biofilm formation by Streptococcus mutans in the presence of saliva. Infec Immun 76(9):4259–4268. https://doi.org/10.1128/IAI.00422-08 [DOI: 10.1128/IAI.00422-08]
  4. Aleksic I, Petkovic M, Jovanovic M, Milivojevic D, Vasiljevic B, Nikodinovic-Runic J, Senerovic L (2017) Anti-biofilm properties of bacterial di-Rhamnolipids and their semi-synthetic amide derivatives. Front Microbiol 8:2454. https://doi.org/10.3389/fmicb.2017.02454 [DOI: 10.3389/fmicb.2017.02454]
  5. Ali FM, Hassan E, Abdelhafez A, Abd-Elhamim B (2023) Isolation and characterization of probiotics from various food products as potential human food additives. Arab Univ J Agri Sci 31(1):63–80. https://doi.org/10.21608/ajs.2023.173367.1503 [DOI: 10.21608/ajs.2023.173367.1503]
  6. Amr M, Abu-Hussien SH, Ismail R, Aboubakr A, Wael R, Yasser M, Hemdan B, El-Sayed SM, Bakry A, Ebeed NM, Elhariry H, Galal A, Abd-Elhalim BT (2023) Utilization of biosynthesized silver nanoparticles from Agaricus bisporus extract for food safety application: synthesis, characterization, antimicrobial efficacy, and toxicological assessment. Sci Rep 13(1):15048. https://doi.org/10.1038/s41598-023-42103-3 [DOI: 10.1038/s41598-023-42103-3]
  7. Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, Brynildsen MP, Bumann D, Camilli A, Collins JJ, Dehio C, Fortune S, Ghigo JM, Hardt WD, Harms A, Heinemann M, Hung DT, Jenal U, Levin BR, Michiels J, Storz G, Tan MW, Tenson T, Van Melderen L, Zinkernagel A (2019) Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol 17(7):441–448. https://doi.org/10.1038/s41579-019-0196-3 . Erratum in: Nat Rev Microbiol. 2019 July;17(7):460. https://doi.org/10.1038/s41579-019-0207-4 . PMID: 30980069; PMCID: PMC7136161
  8. Banat IM, De Rienzo MA, Quinn GA (2014) Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 98(24):9915–9929. https://doi.org/10.1007/s00253-014-6169-6 [DOI: 10.1007/s00253-014-6169-6]
  9. Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nuc Acids Res 46(W1):W257–W263. https://doi.org/10.1093/nar/gky318 [DOI: 10.1093/nar/gky318]
  10. Bolivar-Anillo HJ, González-Rodríguez VE, Cantoral JM, García-Sánchez D, Collado IG, Garrido C (2021) Endophytic bacteria Bacillus subtilis, isolated from Zea mays, as a potential biocontrol agent against Botrytis cinerea. Biol 10(6):492. https://doi.org/10.3390/biology10060492 [DOI: 10.3390/biology10060492]
  11. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52(11):3099–3105. https://doi.org/10.1021/ci300367a [DOI: 10.1021/ci300367a]
  12. Da Silva AF, Banat IM, Giachini AJ, Robl D (2021) Fungal biosurfactants, from nature to biotechnological product: bioprospection, production and potential applications. Bioproc Biosyst Eng 44(10):2003–2034. https://doi.org/10.1007/s00449-021-02597-5 [DOI: 10.1007/s00449-021-02597-5]
  13. Das P, Mukherjee S, Sen R (2009) Antiadhesive action of a marine microbial surfactant. Coll Surf b: Biointerfaces 71(2):183–186. https://doi.org/10.1016/j.colsurfb.2009.02.004 [DOI: 10.1016/j.colsurfb.2009.02.004]
  14. de Souza CG, Martins FICC, Zocolo GJ, Figueiredo JEF, Canuto KM, de Brito ES (2018) Simultaneous quantification of lipopeptide isoforms by UPLC-MS in the fermentation broth from Bacillus subtilis CNPMS22. Ana Bioanal Chem 410(26):6827–6836. https://doi.org/10.1007/s00216-018-1281-6 [DOI: 10.1007/s00216-018-1281-6]
  15. Díaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM (2016) Pseudomonas aeruginosa biofilm disruption using microbial surfactants. J Appl Microbiol 120(4):868–876. https://doi.org/10.1111/jam.13049 [DOI: 10.1111/jam.13049]
  16. Dutta T, Ghosh NN, Das M, Adhikary R, Mandal V, Chattopadhyay AP (2020) Green synthesis of antibacterial and antifungal silver nanoparticles using Citrus limetta peel extract: experimental and theoretical studies. J Environ Chem Eng 8:104019. https://doi.org/10.1016/j.jece.2020.104019 [DOI: 10.1016/j.jece.2020.104019]
  17. Ehling-Schulz M, Lereclus D, Koehler TM (2019) The Bacillus cereus group: Bacillus species with pathogenic potential. Microbiol Spect 7(3):7–3. https://doi.org/10.1128/microbiolspec.GPP3-0032-2018 [DOI: 10.1128/microbiolspec.GPP3-0032-2018]
  18. Farouk SM, Abu-Hussien SH, Abd-Elhalim BT, Mohamed RM, Arabe NM, Hussain AAT, Mostafa ME, Hemdan B, El-Sayed SM, Bakry A, Ebeed NM, Salah M, Elhariry H, Galal A (2023) Biosynthesis and characterization of silver nanoparticles from Punica granatum (pomegranate) peel waste and its application to inhibit foodborne pathogens. Sci Rep 13(1):19469. https://doi.org/10.1038/s41598-023-46355-x [DOI: 10.1038/s41598-023-46355-x]
  19. Gannesen AV, Zdorovenko EL, Botchkova EA, Hardouin J, Massier S, Kopitsyn DS, Gorbachevskii MV, Kadykova AA, Shashkov AS, Zhurina MV, Netrusov AI, Knirel YA, Plakunov VK, Feuilloley MGJ (2019) Composition of the biofilm matrix of Cutibacterium acnes acneic strain RT5. Front Microbiol 10:1284. https://doi.org/10.3389/fmicb.2019.01284 [DOI: 10.3389/fmicb.2019.01284]
  20. Gond SK, Bergen MS, Torres MS, White JF Jr (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87. https://doi.org/10.1016/j.micres.2014.11.004 [DOI: 10.1016/j.micres.2014.11.004]
  21. Hazarika DJ, Goswami G, Gautom T, Parveen A, Das P, Barooah M, Boro RC (2019) Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiol 19(1):71. https://doi.org/10.1186/s12866-019-1440-8 [DOI: 10.1186/s12866-019-1440-8]
  22. Jasim B, Sreelakshmi KS, Mathew J, Radhakrishnan EK (2016) Surfactin, iturin, and fengycin biosynthesis by endophytic Bacillus sp. from Bacopa monnieri. Microb Ecol 72(1):106–119. https://doi.org/10.1007/s00248-016-0753-5 [DOI: 10.1007/s00248-016-0753-5]
  23. Kumari K, Behera HT, Nayak PP, Sinha A, Nandi A, Ghosh A, Saha U, Suar M, Panda PK, Verma SK, Raina V (2023) Amelioration of lipopeptide biosurfactants for enhanced antibacterial and biocompatibility through molecular antioxidant property by methoxy and carboxyl moieties. Biomed Pharmacother 161:114493. https://doi.org/10.1016/j.biopha.2023.114493 [DOI: 10.1016/j.biopha.2023.114493]
  24. Li XY, Shang R, Fu MC, Fu Y (2015) Conversion of biomass-derived fatty acids and derivatives into hydrocarbons using a metal-free hydrodeoxygenation process. Green Chem 17(5):2790–2793. https://doi.org/10.1039/c5gc00556f [DOI: 10.1039/c5gc00556f]
  25. Maiti PK, Das S, Sahoo P, Mandal S (2020) Streptomyces sp SM01 isolated from Indian soil produces a novel antibiotic picolinamycin effective against multi-drug-resistant bacterial strains. Sci Rep. https://doi.org/10.1038/s41598-020-66984-w [DOI: 10.1038/s41598-020-66984-w]
  26. Malviya D, Sahu PK, Singh UB, Paul S, Gupta A, Gupta AR, Singh S, Kumar M, Paul D, Rai JP, Singh HV, Brahmaprakas GP (2020) Lesson from ecotoxicity: revisiting the microbial lipopeptides for the management of emerging diseases for crop protection. Int J Env Res Public Health 17(4):1434. https://doi.org/10.3390/ijerph17041434 [DOI: 10.3390/ijerph17041434]
  27. Mandal V, Sen SK, Mandal NC (2010) Assessment of antibacterial activities of pediocin produced by Pediococcus acidilactici LAB 5. J Food Saf 30:635–651. https://doi.org/10.1111/j.1745-4565.2010.00230.x [DOI: 10.1111/j.1745-4565.2010.00230.x]
  28. Mandal V, Ghosh NN, Mitra PK, Mandal S, Mandal V (2022) Production and characterization of a broad-spectrum antimicrobial 5-butyl-2-pyridine carboxylic acid from Aspergillus fumigatus nHF-01. Sci Rep 12(1):6006. https://doi.org/10.1038/s41598-022-09925-z [DOI: 10.1038/s41598-022-09925-z]
  29. Nicolle LE (2014) Catheter-associated urinary tract infections. Antimicrob Res Infec Cont 3:23. https://doi.org/10.1186/2047-2994-3-23 [DOI: 10.1186/2047-2994-3-23]
  30. Park JK, Hasumi K, Endo A (1995) Inhibition of the binding of oxidized low-density lipoprotein to the macrophages by iturin C related compounds. J Antibiot 48:226–232. https://doi.org/10.7164/antibiotics.48.226 [DOI: 10.7164/antibiotics.48.226]
  31. Parvin A, Adhikary R, Guha S, Mitra PK, Mandal V (2022) Antibiofilm and antimicrobial activity of biosurfactants from two Lactiplantibacillus pentosus strains against food and topical pathogens. J Food Proces Preserv 46(10):e16927. https://doi.org/10.1111/jfpp.16927 [DOI: 10.1111/jfpp.16927]
  32. Pathak KV, Keharia H (2014) Identification of surfactins and iturins produced by potent fungal antagonist, Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) tree using mass spectrometry. 3 Biotech 4(3):283–295. https://doi.org/10.1007/s13205-013-0151-3 [DOI: 10.1007/s13205-013-0151-3]
  33. Pecci Y, Rivardo F, Martinotti MG, Allegrone G (2010) LC/ESI-MS/MS characterization of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain. J Mass Spectrom 45(7):772–778. https://doi.org/10.1002/jms.1767 [DOI: 10.1002/jms.1767]
  34. Qamar SA, Pacifico S (2023) Cleaner production of biosurfactants via bio-waste valorization: a comprehensive review of characteristics, challenges, and opportunities in bio-sector applications. J Env Chem Eng 11(6):111555. https://doi.org/10.1016/j.jece.2023.111555 [DOI: 10.1016/j.jece.2023.111555]
  35. Qazi MJ, Schlegel SJ, Backus EHG, Bonn M, Bonn D, Shahidzadeh N (2020) Dynamic surface tension of surfactants in the presence of high salt concentrations. Langmuir 36(27):7956–7964. https://doi.org/10.1021/acs.langmuir.0c01211 [DOI: 10.1021/acs.langmuir.0c01211]
  36. Quan K, Hou J, Zhang Z, Ren Y, Peterson BW, Flemming HC, Mayer C, Busscher HJ, van der Mei HC (2022) Water in bacterial biofilms: pores and channels, storage and transport functions. Crit Rev Microbiol 48(3):283–302. https://doi.org/10.1080/1040841X.2021.1962802 [DOI: 10.1080/1040841X.2021.1962802]
  37. Rahman PKSM, Gakpe E (2008) Production, characterisation and applications of biosurfactants—review. Biotechnol 7:360–370. https://doi.org/10.3923/biotech.2008.360.370 [DOI: 10.3923/biotech.2008.360.370]
  38. Rasiya KT, Sebastian D (2021) Iturin and surfactin from the endophyte Bacillus amyloliquefaciens strain RKEA3 exhibits antagonism against Staphylococcus aureus. Biocat Agricul Biotech 36:102125. https://doi.org/10.1016/j.bcab.2021.102125 [DOI: 10.1016/j.bcab.2021.102125]
  39. Ravindran A, Sajayan A, Priyadharshini GB, Selvin J, Kiran GS (2020) Revealing the efficacy of thermostable biosurfactant in heavy metal bioremediation and surface treatment in vegetables. Front Microbiol 11:222. https://doi.org/10.3389/fmicb.2020.00222 [DOI: 10.3389/fmicb.2020.00222]
  40. Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83(3):541–553. https://doi.org/10.1007/s00253-009-1987-7 [DOI: 10.1007/s00253-009-1987-7]
  41. Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20(4):430–440. https://doi.org/10.1094/MPMI-20-4-0430 [DOI: 10.1094/MPMI-20-4-0430]
  42. Sana S, Datta S, Biswas D (1860) Sengupta D (2018) Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage. Biochim Biophys Acta (BBA) Biomembranes 2:579–585. https://doi.org/10.1016/j.bbamem.2017.09.027 [DOI: 10.1016/j.bbamem.2017.09.027]
  43. Santos DK, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17(3):401. https://doi.org/10.3390/ijms17030401 [DOI: 10.3390/ijms17030401]
  44. Santos APP, Silva MDS, Costa EVL, Rufino RD, Santos VA, Ramos CS, Sarubbo LA, Porto ALF (2017) Production and characterization of a biosurfactant produced by Streptomyces sp. DPUA 1559 isolated from lichens of the Amazon region. Braz J Med Biol Res 51(2):e6657. https://doi.org/10.1590/1414-431x20176657 [DOI: 10.1590/1414-431x20176657]
  45. Shivaji S, Chaturvedi P, Suresh K, Reddy GSN, Dutt CBS, Wainwright M, Narlikar JV, Bhargava PM (2006) Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int J Syst Evol Microbe 56(7):1465–1473. https://doi.org/10.1099/ijs.0.64029-0 [DOI: 10.1099/ijs.0.64029-0]
  46. Silva SSE, Carvalho JWP, Aires CP, Nitschke M (2017) Disruption of Staphylococcus aureus biofilms using rhamnolipid biosurfactants. J Dairy Sci 100(10):7864–7873. https://doi.org/10.3168/jds.2017-13012 [DOI: 10.3168/jds.2017-13012]
  47. Singh SS, Sharma D, Baindara P, Choksket S, Harshvardhan Mandal SM, Grover V, Korpole S (2021) Characterization and antimicrobial studies of iturin-like and bogorol-like lipopeptides from Brevibacillus spp. strains GI9 and SKDU10. Front Microbiol 12:729026. https://doi.org/10.3389/fmicb.2021.729026 [DOI: 10.3389/fmicb.2021.729026]
  48. Syed CS, Sairam M, Audipudi AV (2020) Exploration of antibacterial and antiproliferative secondary metabolites from marine Bacillus. J Microbiol Biotechnol Food Sci 9(3):628–633. https://doi.org/10.15414/jmbfs.2019/20.9.3.628-633 [DOI: 10.15414/jmbfs.2019/20.9.3.628-633]
  49. Thavasi R, Subramanyam Nambaru VR, Jayalakshmi S, Balasubramanian T, Banat IM (2011) Biosurfactant production by Pseudomonas aeruginosa from renewable resources. Ind J Microbiol 51(1):30–36. https://doi.org/10.1007/s12088-011-0076-7 [DOI: 10.1007/s12088-011-0076-7]
  50. van Baarlen P, van Belkum A, Summerbell RC, Crous PW, Thomma BP (2007) Molecular mechanisms of pathogenicity: How do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiol Rev 31(3):239–277. https://doi.org/10.1111/j.1574-6976.2007.00065.x [DOI: 10.1111/j.1574-6976.2007.00065.x]
  51. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharmacy Therapeut 40(4):277
  52. Waghmode S, Swami S, Sarkar D, Suryavanshi M, Roachlani S, Choudhari P, Satpute S (2020) Exploring the pharmacological potentials of biosurfactant derived from Planococcus maritimus SAMP MCC 3013. Curr Microbiol 77(3):452–459. https://doi.org/10.1007/s00284-019-01850-1 [DOI: 10.1007/s00284-019-01850-1]
  53. Wu B, Xiu J, Yu L, Huang L, Yi L, Ma Y (2022) Biosurfactant production by Bacillus subtilis SL and its potential for enhanced oil recovery in low permeability reservoirs. Sci Rep 12(1):7785. https://doi.org/10.1038/s41598-022-12025-7 [DOI: 10.1038/s41598-022-12025-7]
  54. Zgurskaya HI, Rybenkov VV, Krishnamoorthy G, Leus IV (2018) Trans-envelope multidrug efflux pumps of Gram-negative bacteria and their synergism with the outer membrane barrier. Res Microbiol 169(7–8):351–356. https://doi.org/10.1016/j.resmic.2018.02.002 [DOI: 10.1016/j.resmic.2018.02.002]

Grants

  1. Memo no. 285(Sanc.)/ST/P/S&T/2G-10/2017, Dated 28.03.2018/Department of Science and Technology and Biotechnology, Govt of West Bengal
  2. Memo no. 285(Sanc.)/ST/P/S&T/2G-10/2017, Dated 28.03.2018/Department of Science and Technology and Biotechnology, Govt of West Bengal
  3. DST-SERB/F/5369/2013-'14; dated 19.11.2013/Department of Science and Technology, Science and Engineering Board, Government of India

MeSH Term

Biofilms
Bacillus
Humans
Bacterial Adhesion
Anti-Bacterial Agents
Microbial Sensitivity Tests
Peptides, Cyclic
Lipopeptides
Surface-Active Agents
Endophytes
Cell Line
Bacteria

Chemicals

Anti-Bacterial Agents
Peptides, Cyclic
Lipopeptides
Surface-Active Agents

Word Cloud

Created with Highcharts 10.0.0BSBacillusspMTCCiturinfood-bornepathogensbiofilmantimicrobialC0topicalcellconcentrationproducedendophyticLLB-04oldadhesion16 mg/mlformationsubtilis411structurallybroad-spectrumantibiofilmstudybiosurfactantcultureusingsolventmethodstested18 hcellularinhibitoryBIClinehumancancerrevealedcoli730BIturincyclicheptapeptidesnumberhomologousderivativespropertiespresentelucidatesstructureefficacybacteriumisolatedleaveshemiparasiteScurrulaparasiticaLwinterseasonstaticbatch120 hNutrientBrothNBmediumextractedseriessystemspurifiedfractionationpreparativeHigh-PerformanceLiquidChromatographyHPLCmethodcharacterizedvariousanalyticalactivitiesFurthermoreaggregationbacterialpolystyreneurethralcatheterscheckedBiofilmtoxicity0-1568 mg/mlembryoniclungtissueL-132alveolarepithelialsilicomodeactionstudiedstandardspectroscopicstudies96 hharvestedGenBankAccessionNo:MF037706minimumMICvaluesrangingaverageinhibition8-1cellsinhibited464timesalsodestabilize40-48 hpreformedsynergisticresponsestreptomycinEscherichiaciprofloxacinEvancomycinStaphylococcusepidermidis3086antiproliferativeactivity1-08 mg/mllinesIn-silicoprotein-ligandinteractionspredictedinteractdifferentmembraneproteinsThusfirsttimeexploitedlarge-scaleproductionusedcombatingLipopeptideeffectivelyinhibitspreventsvitrobiomedicaldevicesAntibiofilmC3CombinationalassayEndophyticTopical

Similar Articles

Cited By