Lead source apportionment and climatic impacts in rural environmental justice mining communities.

Zain Alabdain Alqattan, Alexandra Trahan, God'sgift N Chukwuonye, Miriam Jones, Mónica D Ramírez-Andreotta
Author Information
  1. Zain Alabdain Alqattan: Department of Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA.
  2. Alexandra Trahan: Department of Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA.
  3. God'sgift N Chukwuonye: Department of Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA.
  4. Miriam Jones: Department of Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA.
  5. Mónica D Ramírez-Andreotta: Department of Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA; Division of Community, Environment & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA. Electronic address: mdramire@arizona.edu.

Abstract

After a sequence of natural disasters in Gila County, Arizona, USA environmental justice (EJ), mining areas, community members raised concerns about metal(loid)s exposure and origin. To address these concerns, non-residential sediments (0-2 cm, 2-15 cm, and 15-30 cm), household soil (0-2 cm), and indoor and outdoor dust samples were analyzed for metal(loid)s concentration and Pb isotopes via inductively coupled plasma mass spectrometry. To identify the potential sources of Pb, 37 studies were considered, and 21 different Pb isotopic ratios were documented and compared. Spearman's correlation and principal component analysis were used to investigate the co-occurrence of metal(loid)s associated with Pb. The results demonstrated a clear association (p < 0.05) between Pb and mining activity in households and non-residential locations as well as a co-occurrence with As, Cd, Cu, Mo, Sb, and Zn at 0-2 cm and in non-residential with As, Cd, and Zn at 2-15 cm and 15-30 cm. The outdoor household dust was impacted by a mixture of Pb sources and was associated with metal(loid)s coming from mining, wildfire, lead based-paint and landfill, whereas indoor Pb dust was associated mainly with metal(loid)s coming from geogenic sources. Further, 66% of town/city sediment samples across depth and 53.8% of outdoor dust samples were aligned with mining fingerprint and 30.1% of outdoor dust and 25% of household soil samples were aligned with the wildfire Pb isotopic ratio/fingerprint. The Positive Matrix Factorization model illustrates flood's ability to remobilize metal(loid)s from neighboring mine sites to the households' locations. Currently there is no established Pb isotopic ratio composition for wildfires in Arizona; this study lays the foundation for understanding the complex relationship between the myriads of lead sources in our environment, wildfires, and flooding.

Keywords

References

  1. Sci Total Environ. 2014 Jul 15;487:82-90 [PMID: 24769193]
  2. Toxics. 2023 Dec 14;11(12): [PMID: 38133419]
  3. Environ Sci Technol. 2003 Oct 15;37(20):4586-91 [PMID: 14594365]
  4. Mar Pollut Bull. 2024 Mar;200:116145 [PMID: 38354592]
  5. Environ Sci Technol. 2022 Sep 20;56(18):13107-13118 [PMID: 36083611]
  6. Sci Total Environ. 2020 Sep 1;733:137931 [PMID: 32438193]
  7. Mar Pollut Bull. 2016 Dec 15;113(1-2):247-252 [PMID: 27659269]
  8. Sci Total Environ. 2023 Jan 20;857(Pt 1):159119 [PMID: 36183764]
  9. Environ Sci Pollut Res Int. 2020 Mar;27(9):10103-10114 [PMID: 31975010]
  10. Environ Sci Technol. 2011 Aug 1;45(15):6290-5 [PMID: 21678924]
  11. Chemosphere. 2023 Feb;313:137595 [PMID: 36563718]
  12. Nat Commun. 2023 Jun 14;14(1):3509 [PMID: 37316472]
  13. J Anal Methods Chem. 2019 Sep 8;2019:2754385 [PMID: 31612093]
  14. Interdiscip Toxicol. 2015 Jun;8(2):55-64 [PMID: 27486361]
  15. Sci Total Environ. 2014 Apr 1;476-477:165-80 [PMID: 24463253]
  16. J Toxicol Clin Toxicol. 1998;36(7):691-703 [PMID: 9865237]
  17. Sci Total Environ. 2014 Sep 15;493:750-6 [PMID: 24995641]
  18. Anal Chem. 2006 Dec 1;78(23):8044-50 [PMID: 17134138]
  19. Heliyon. 2022 Dec 19;8(12):e12414 [PMID: 36593833]
  20. Geohealth. 2024 Jun 18;8(6):e2024GH001045 [PMID: 38895173]
  21. Environ Health Perspect. 2000 Nov;108(11):1091-7 [PMID: 11102302]
  22. Environ Monit Assess. 2024 Jul 29;196(8):765 [PMID: 39073501]
  23. Sci Total Environ. 2019 Mar 15;656:250-260 [PMID: 30504025]
  24. Sci Total Environ. 2023 May 10;872:162228 [PMID: 36791848]
  25. J Environ Manage. 2021 Nov 15;298:113531 [PMID: 34426224]
  26. Environ Evid. 2022;11(1):30 [PMID: 36097609]
  27. Science. 1972 May 5;176(4034):510-1 [PMID: 5032350]
  28. Environ Pollut. 2019 May;248:90-100 [PMID: 30780071]
  29. Sci Total Environ. 2024 Jan 10;907:167577 [PMID: 37839486]
  30. Sci Total Environ. 2022 Feb 1;806(Pt 3):151276 [PMID: 34717995]
  31. Int J Environ Res Public Health. 2022 Nov 15;19(22): [PMID: 36429725]
  32. Environ Res. 2020 Jan;180:108797 [PMID: 31761335]
  33. Biol Trace Elem Res. 1987 Apr;12(1):223-9 [PMID: 24254605]
  34. Sci Total Environ. 2022 Aug 1;832:155034 [PMID: 35405224]
  35. Environ Pollut. 2020 Jul;262:114235 [PMID: 32146362]
  36. Environ Int. 2018 Dec;121(Pt 1):85-101 [PMID: 30179767]
  37. Sci Total Environ. 2005 Jun 15;346(1-3):138-48 [PMID: 15993689]
  38. Sci Total Environ. 2013 Jan 15;443:520-9 [PMID: 23220142]
  39. Atmos Environ (1994). 2014 Aug 1;92:339-347 [PMID: 24955017]
  40. Environ Pollut. 2014 Jul;190:159-65 [PMID: 24763391]
  41. Science. 1965 Jan 29;147(3657):502-3 [PMID: 17749229]
  42. Nat Commun. 2023 Dec 12;14(1):8007 [PMID: 38086795]
  43. Sci Total Environ. 2021 Jan 1;750:141462 [PMID: 32882490]
  44. Indian J Occup Environ Med. 2018 Sep-Dec;22(3):128-137 [PMID: 30647514]
  45. Int J Environ Res Public Health. 2018 Sep 12;15(9): [PMID: 30213099]
  46. Environ Res. 2020 May;184:109349 [PMID: 32199320]
  47. Environ Int. 2022 Jan;158:106908 [PMID: 34619530]
  48. Nat Commun. 2020 Nov 24;11(1):5956 [PMID: 33235203]
  49. PLoS One. 2014 Sep 26;9(9):e107835 [PMID: 25259524]
  50. Environ Sci Technol. 2009 Feb 15;43(4):1078-85 [PMID: 19320161]
  51. Sci Rep. 2018 Apr 18;8(1):6154 [PMID: 29670142]
  52. Sci Total Environ. 2021 Jan 15;752:141827 [PMID: 32889271]
  53. Environ Int. 2019 Mar;124:320-328 [PMID: 30660845]
  54. Sci Total Environ. 2020 May 20;718:134639 [PMID: 31843310]
  55. J Expo Sci Environ Epidemiol. 2024 Jul;34(4):709-717 [PMID: 38548929]
  56. Disaster Med Public Health Prep. 2014 Feb;8(1):44-50 [PMID: 24559800]
  57. Sci Total Environ. 2020 Nov 15;743:140635 [PMID: 32663689]
  58. J Environ Health Sci Eng. 2021 Mar 8;19(1):531-540 [PMID: 34150256]
  59. Environ Pollut. 2021 Nov 15;289:117867 [PMID: 34375850]
  60. Proc Natl Acad Sci U S A. 2021 Sep 7;118(36): [PMID: 34465624]
  61. Chemosphere. 2015 Mar;122:219-226 [PMID: 25496740]
  62. Am J Kidney Dis. 2014 Jul;64(1):1-3 [PMID: 24954451]
  63. J Hazard Mater. 2024 Jan 15;462:132730 [PMID: 37820525]
  64. Sci Rep. 2022 May 28;12(1):8972 [PMID: 35643781]
  65. Water Air Soil Pollut. 2016;227(7):239 [PMID: 27397942]
  66. Environ Pollut. 2020 Dec;267:115400 [PMID: 33254611]
  67. Int J Environ Res Public Health. 2022 Jan 19;19(3): [PMID: 35162130]

Grants

  1. P42 ES004940/NIEHS NIH HHS
  2. R21 ES034591/NIEHS NIH HHS

MeSH Term

Mining
Lead
Arizona
Dust
Geologic Sediments
Environmental Monitoring
Rural Population
Humans

Chemicals

Lead
Dust

Word Cloud

Created with Highcharts 10.0.0Pbmetalloidsminingdustoutdoorsamplessourcesnon-residential0-2 cmhouseholdisotopicassociatedArizonaenvironmentaljusticeconcerns2-15 cm15-30 cmsoilindoorco-occurrencelocationsCdZncomingwildfireleadalignedwildfiresLeadsourceapportionmentsequencenaturaldisastersGilaCountyUSAEJareascommunitymembersraisedexposureoriginaddresssedimentsanalyzedconcentrationisotopesviainductivelycoupledplasmamassspectrometryidentifypotential37studiesconsidered21differentratiosdocumentedcomparedSpearman'scorrelationprincipalcomponentanalysisusedinvestigateresultsdemonstratedclearassociationp < 005activityhouseholdswellCuMoSbimpactedmixturebased-paintlandfillwhereasmainlygeogenic66%town/citysedimentacrossdepth538%fingerprint301%25%ratio/fingerprintPositiveMatrixFactorizationmodelillustratesflood'sabilityremobilizeneighboringminesiteshouseholds'CurrentlyestablishedratiocompositionstudylaysfoundationunderstandingcomplexrelationshipmyriadsenvironmentfloodingclimaticimpactsruralcommunitiesClimaticeventsCopperDustSoil/sediment

Similar Articles

Cited By