response to shifts in biofilm structure mediated by hydrodynamics.

Ana Rosa Silva, C William Keevil, Ana Pereira
Author Information
  1. Ana Rosa Silva: LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
  2. C William Keevil: School of Biological Sciences, University of Southampton, Southampton, United Kingdom.
  3. Ana Pereira: LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.

Abstract

Preventing legionellosis in water systems demands effective hydrodynamic management and biofilm mitigation. This study investigates the complex relationship between hydrodynamics (80 RPM and stagnation), biofilm mesoscale structure and colonization, by addressing three key questions: (1) How do low flow stagnation conditions affect biofilm response to colonization?, (2) How do biofilm structural variations mediate migration across the biofilm?, and (3) Can specific hydrodynamic conditions trigger entrance in a viable but nonculturable (VBNC) state? It was found that biofilms exhibit different responses to based on the prevailing hydrodynamic conditions. While biofilm thickness and porosity decreased under shear (80 RPM), thickness tends to significantly increase when pre-established 80 RPM-grown biofilms are set to stagnation upon spiking. Imposing stagnation after the spiking also seemed to accelerate migration towards the bottom of the biofilm. Water structures in the biofilm seem to be key to migration across the biofilm. Finally, shear conditions favoured the transition of to VBNC states (���94 %), despite the high viable cell counts (���8 log CFU/cm) found throughout the experiments. This research highlights the increased risk posed by biofilms and stagnation, emphasizing the importance of understanding the mechanisms that govern behaviour in diverse biofilm environments. These insights are crucial for developing more effective monitoring and prevention strategies in water systems.

Keywords

References

  1. FEMS Microbes. 2023 Aug 16;4:xtad016 [PMID: 37705999]
  2. Water Res. 2012 Nov 1;46(17):5499-5508 [PMID: 22898671]
  3. Appl Environ Microbiol. 2007 Nov;73(22):7456-64 [PMID: 17720845]
  4. Crit Rev Microbiol. 2016;42(1):65-74 [PMID: 24580080]
  5. Heliyon. 2024 Jun 04;10(11):e32334 [PMID: 38933949]
  6. Front Microbiol. 2023 Jan 30;14:1094877 [PMID: 36793878]
  7. Emerg Infect Dis. 2002 Sep;8(9):881-90 [PMID: 12194761]
  8. Pathogens. 2019 Dec 13;8(4): [PMID: 31847120]
  9. Biofilm. 2019 Dec 19;2:100017 [PMID: 33447803]
  10. Biofilm. 2024 Jul 03;8:100209 [PMID: 39071175]
  11. Environ Sci Pollut Res Int. 2022 Nov;29(51):76532-76542 [PMID: 36161570]
  12. Adv Colloid Interface Sci. 2021 Feb;288:102336 [PMID: 33421727]
  13. NPJ Biofilms Microbiomes. 2024 Oct 6;10(1):101 [PMID: 39368992]
  14. J Appl Microbiol. 2009 Aug;107(2):368-78 [PMID: 19302312]
  15. Microb Ecol. 2015 Jan;69(1):215-24 [PMID: 25074793]
  16. Front Microbiol. 2020 May 21;11:928 [PMID: 32508772]
  17. Antibiotics (Basel). 2021 Aug 11;10(8): [PMID: 34439016]
  18. Microbiol Spectr. 2023 Feb 27;:e0358122 [PMID: 36847543]
  19. Math Med Biol. 2020 Feb 28;37(1):83-116 [PMID: 30950494]
  20. Water Res. 2016 Apr 15;93:276-288 [PMID: 26928563]
  21. Microbiol Insights. 2013 Jul 04;6:49-57 [PMID: 24826074]
  22. Microorganisms. 2023 Dec 25;12(1): [PMID: 38257865]
  23. Water Res. 2018 Sep 15;141:417-427 [PMID: 29685632]
  24. Microorganisms. 2021 Jan 15;9(1): [PMID: 33467483]
  25. Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):13088-93 [PMID: 22773813]
  26. Microbiology (Reading). 2019 Jun;165(6):593-610 [PMID: 30843781]
  27. Pathogens. 2020 Apr 15;9(4): [PMID: 32326561]
  28. Nat Rev Microbiol. 2023 Feb;21(2):70-86 [PMID: 36127518]
  29. Bioprocess Biosyst Eng. 2018 Jun;41(6):757-770 [PMID: 29428998]
  30. Microorganisms. 2021 Jun 03;9(6): [PMID: 34205095]
  31. Water Res. 2022 Nov 1;226:119238 [PMID: 36270142]
  32. Front Microbiol. 2016 Feb 15;7:134 [PMID: 26913024]
  33. PLoS Pathog. 2008 Apr 25;4(4):e1000052 [PMID: 18437240]
  34. Microorganisms. 2022 Apr 29;10(5): [PMID: 35630375]
  35. Sci Rep. 2024 Jul 22;14(1):16781 [PMID: 39039267]
  36. Perspect Public Health. 2018 Sep;138(5):282-286 [PMID: 30156484]
  37. Environ Sci Technol. 2015 Apr 7;49(7):4274-82 [PMID: 25699403]
  38. Bioinformatics. 2022 Mar 4;38(6):1708-1715 [PMID: 34986264]
  39. Water Res X. 2023 Sep 09;21:100201 [PMID: 38098883]
  40. ISME J. 2017 Jun;11(6):1318-1330 [PMID: 28282040]
  41. Sci Total Environ. 2024 Dec 1;954:176655 [PMID: 39368514]
  42. J Gen Microbiol. 1992 Nov;138(11):2371-80 [PMID: 1479356]
  43. Biotechnol Bioeng. 2017 Jul;114(7):1386-1402 [PMID: 28266013]
  44. Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):245-56 [PMID: 12448723]
  45. Biofilm. 2024 May 29;7:100204 [PMID: 38948680]
  46. Appl Environ Microbiol. 2006 Aug;72(8):5453-62 [PMID: 16885298]
  47. Appl Environ Microbiol. 1991 Nov;57(11):3345-9 [PMID: 1781692]
  48. Environ Res. 2020 Dec;191:110231 [PMID: 32976823]
  49. Sci Total Environ. 2020 Apr 10;712:136131 [PMID: 31931228]
  50. Bioinformatics. 2024 Feb 1;40(2): [PMID: 38265243]
  51. Biofilm. 2024 Mar 30;7:100196 [PMID: 38601816]
  52. NPJ Biofilms Microbiomes. 2022 Apr 29;8(1):33 [PMID: 35487949]
  53. Water Res. 2017 Jun 15;117:68-86 [PMID: 28390237]
  54. PLoS One. 2012;7(11):e50560 [PMID: 23185637]

Word Cloud

Similar Articles

Cited By