Effects of Eleclazine (GS6615) on the proarrhythmic electrophysiological changes induced by myocardial stretch.

Francisco J Chorro, Luis Such-Miquel, Samuel Cuñat, Oscar Arias-Mutis, Patricia Genovés, Manuel Zarzoso, Antonio Alberola, Luis Such-Belenguer, Irene Del Canto
Author Information
  1. Francisco J Chorro: Department of Medicine, University of Valencia, Valencia, Spain.
  2. Luis Such-Miquel: Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain.
  3. Samuel Cuñat: Department of Physiology, University of Valencia, Valencia, Spain.
  4. Oscar Arias-Mutis: Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain.
  5. Patricia Genovés: Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain.
  6. Manuel Zarzoso: Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain.
  7. Antonio Alberola: Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain.
  8. Luis Such-Belenguer: Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain.
  9. Irene Del Canto: Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain.

Abstract

Purpose: Myocardial stretch is a proarrhythmic factor. Eleclazine (GS6615) is a late sodium current (INaL) inhibitor that has shown protective effects against arrhythmias in various experimental models. Data on its effects during myocardial stretch are lacking. The aim of this study was to investigate the electrophysiological modifications induced by eleclazine basally and during acute ventricular stretch.
Methods: Left ventricular stretch was induced at baseline and during perfusion with eleclazine in 26 Langendorff rabbit heart preparations. Programmed stimulation and high-resolution mapping techniques were applied using multiple epicardial electrodes.
Results: At baseline, both the ventricular refractory period measured at a fixed cycle length (250 m) and its surrogate obtained during ventricular fibrillation (VF) decreased significantly during stretch (baseline 128 ± 15 vs. stretch 110 ± 14 m; n = 15; p < 0.001, and baseline 52 ± 13 vs. stretch 44 ± 9 m; n = 11; p < 0.05), while the VF dominant frequency (DF) increased significantly (DF baseline 13 ± 3 vs. stretch 17 ± 5Hz; n = 11; p < 0.01). Eleclazine 1.4 μM prolonged refractoriness, diminished both DF and conduction velocity during the arrhythmia, and avoided the stretch induced variations in refractoriness (baseline 148 ± 19 vs. stretch 150 ± 23 m; n = 15; ns, and baseline 73 ± 15 vs. stretch 77 ± 15 m; n = 11; ns) and in DF (baseline 12 ± 5 vs. stretch 12 ± 3 Hz; ns). The VF complexity index was inversely related to refractoriness (r = -0.64; p < 0.001). Under eleclazine perfusion, the VF activation patterns were less complex, and the arrhythmia stopped in 6 out of 11 experiments (55%; p < 0.05 vs. baseline).
Conclusion: Eleclazine (GS6615) reduced the proarrhythmic electrophysiological changes induced by myocardial stretch and slowed and simplified activation patterns during VF in the experimental model used.

Keywords

References

  1. Heart Rhythm. 2018 Feb;15(2):277-286 [PMID: 29017927]
  2. Heart Rhythm. 2016 Aug;13(8):1679-86 [PMID: 27108587]
  3. Circulation. 1997 Sep 2;96(5):1686-95 [PMID: 9315565]
  4. Cardiovasc Drugs Ther. 2015 Jun;29(3):231-41 [PMID: 26138210]
  5. Am J Physiol Cell Physiol. 2012 Apr 15;302(8):C1141-51 [PMID: 22189558]
  6. Mol Pharmacol. 2016 Jul;90(1):52-60 [PMID: 27136942]
  7. Rev Esp Cardiol (Engl Ed). 2015 Dec;68(12):1101-10 [PMID: 25985899]
  8. JACC Clin Electrophysiol. 2024 Feb;10(2):379-401 [PMID: 38127010]
  9. J Physiol. 2020 Jul;598(14):2835-2846 [PMID: 30707447]
  10. Heart Rhythm. 2022 Feb;19(2):318-329 [PMID: 34678525]
  11. Front Physiol. 2016 Jan 05;6:408 [PMID: 26779036]
  12. J Mol Cell Cardiol. 2018 Oct;123:168-179 [PMID: 30240676]
  13. Cardiovasc Res. 2013 Sep 1;99(4):600-11 [PMID: 23752976]
  14. Eur Heart J. 2020 May 7;41(18):1757-1763 [PMID: 31390006]
  15. Am J Physiol Heart Circ Physiol. 2009 Nov;297(5):H1860-9 [PMID: 19749168]
  16. Curr Cardiol Rep. 2023 Jun;25(6):525-534 [PMID: 37036554]
  17. Br J Pharmacol. 2016 Nov;173(21):3088-3098 [PMID: 27449698]
  18. J Cardiovasc Electrophysiol. 2005 Oct;16(10):1087-96 [PMID: 16191119]
  19. Channels (Austin). 2021 Dec;15(1):1-19 [PMID: 33258400]
  20. Lancet. 2023 Sep 9;402(10405):883-936 [PMID: 37647926]
  21. J Clin Invest. 2006 Dec;116(12):3127-38 [PMID: 17124532]
  22. JACC Clin Electrophysiol. 2022 Jun;8(6):754-762 [PMID: 35738852]
  23. Heart Rhythm O2. 2020 Aug;1(3):206-214 [PMID: 32864638]
  24. Pharmaceuticals (Basel). 2021 Nov 11;14(11): [PMID: 34832924]
  25. Heart Rhythm. 2017 Mar;14(3):448-454 [PMID: 27777148]
  26. Sci Rep. 2017 Apr 20;7(1):981 [PMID: 28428622]
  27. Physiol Rev. 2021 Jan 1;101(1):37-92 [PMID: 32380895]
  28. Heart Rhythm. 2015 Feb;12(2):440-8 [PMID: 25460862]
  29. J Mol Cell Cardiol. 2013 May;58:172-81 [PMID: 23220288]
  30. Mol Pharmacol. 2020 Nov;98(5):540-547 [PMID: 32938719]
  31. Heart Rhythm. 2023 Feb;20(2):291-298 [PMID: 36265692]
  32. Arrhythm Electrophysiol Rev. 2020 Feb 12;8(4):294-299 [PMID: 32685160]
  33. Circulation. 2004 Aug 24;110(8):904-10 [PMID: 15302796]
  34. Philos Trans R Soc Lond B Biol Sci. 2023 Jun 19;378(1879):20220163 [PMID: 37122215]
  35. Front Cardiovasc Med. 2022 Aug 18;9:949294 [PMID: 36061538]
  36. Circ Heart Fail. 2016 Mar;9(3):e002764 [PMID: 26915375]
  37. Europace. 2013 May;15(5):761-9 [PMID: 23376977]
  38. Heart Rhythm. 2023 Jan;20(1):61-68 [PMID: 36075534]
  39. Front Physiol. 2020 Aug 04;11:922 [PMID: 32848863]
  40. Circ Arrhythm Electrophysiol. 2017 Mar;10(3): [PMID: 28314847]
  41. Heart Rhythm. 2021 Oct;18(10):1657-1665 [PMID: 33965606]
  42. Circ Res. 1988 Mar;62(3):554-62 [PMID: 3342478]
  43. Rev Esp Cardiol (Engl Ed). 2013 Mar;66(3):177-84 [PMID: 24775451]
  44. Cardiovasc Drugs Ther. 2018 Oct;32(5):413-425 [PMID: 30173392]
  45. Heart Rhythm. 2020 Mar;17(3):503-511 [PMID: 31622781]
  46. Prog Biophys Mol Biol. 2020 Nov;157:54-75 [PMID: 32188566]
  47. J Med Chem. 2016 Oct 13;59(19):9005-9017 [PMID: 27690427]
  48. Front Pharmacol. 2014 Mar 10;5:41 [PMID: 24653702]
  49. Front Physiol. 2018 Oct 16;9:1453 [PMID: 30374311]
  50. Heart Rhythm O2. 2024 Mar 14;5(4):254-255 [PMID: 38690139]
  51. J Mol Cell Cardiol. 2020 Feb;139:190-200 [PMID: 31958466]
  52. Pharmaceuticals (Basel). 2022 Feb 15;15(2): [PMID: 35215342]
  53. Pharmaceuticals (Basel). 2023 Apr 07;16(4): [PMID: 37111317]
  54. Front Pharmacol. 2017 Feb 06;8:36 [PMID: 28220073]
  55. Eur Heart J. 2017 Oct 21;38(40):2986-2994 [PMID: 28137981]

Word Cloud

Created with Highcharts 10.0.0stretch±baselinevs=EleclazineinducedventricularVFnp<0GS6615myocardial1511DFproarrhythmicelectrophysiologicaleleclazinerefractorinessnseffectsarrhythmiasexperimentalperfusionmappingfibrillationsignificantly0011305arrhythmia12activationpatternschangesPurpose:MyocardialfactorlatesodiumcurrentINaLinhibitorshownprotectivevariousmodelsDatalackingaimstudyinvestigatemodificationsbasallyacuteMethods:Left26LangendorffrabbitheartpreparationsProgrammedstimulationhigh-resolutiontechniquesappliedusingmultipleepicardialelectrodesResults:refractoryperiodmeasuredfixedcyclelength250 msurrogateobtaineddecreased12811014 m52449 mdominantfrequencyincreased3175Hz0114 μMprolongeddiminishedconductionvelocityavoidedvariations1481915023 m737715 m53 Hzcomplexityindexinverselyrelatedr-064lesscomplexstopped6experiments55%Conclusion:reducedslowedsimplifiedmodelusedEffectscardiac

Similar Articles

Cited By