How much can we save by applying artificial intelligence in evidence synthesis? Results from a pragmatic review to quantify workload efficiencies and cost savings.

Seye Abogunrin, Jeffrey M Muir, Clarissa Zerbini, Grammati Sarri
Author Information
  1. Seye Abogunrin: Roche, Basel, Switzerland.
  2. Jeffrey M Muir: Cytel, Inc., Toronto, ON, Canada.
  3. Clarissa Zerbini: Roche, Basel, Switzerland.
  4. Grammati Sarri: Cytel, Inc., London, United Kingdom.

Abstract

Introduction: Researchers are increasingly exploring the use of artificial intelligence (AI) tools in evidence synthesis, a labor-intensive, time-consuming, and costly effort. This review explored and quantified the potential efficiency benefits of using automated tools as part of core evidence synthesis activities compared with human-led methods.
Methods: We searched the MEDLINE and Embase databases for English-language articles published between 2012 and 14 November 2023, and hand-searched the ISPOR presentations database (2020-2023) for articles presenting quantitative results on workload efficiency in systematic literature reviews (SLR) when AI automation tools were utilized. Data on efficiencies (time- and cost-related) were collected.
Results: We identified 25 eligible studies: 13 used machine learning, 10 used natural language processing, and once each used a systematic review automation tool and a non-specified AI tool. In 17 studies, a >50% time reduction was observed, with 5-to 6-fold decreases in abstract review time. When the number of abstracts reviewed was examined, decreases of 55%-64% were noted. Studies examining work saved over sampling at 95% recall reported 6- to 10-fold decreases in workload with automation. No studies quantified the economic impact associated with automation, although one study found that there was an overall labor reduction of >75% over manual methods during dual-screen reviews.
Discussion: AI can reduce both workload and create time efficiencies when applied to evidence gathering efforts in SLRs. These improvements can facilitate the implementation of novel approaches in decision making that consider the real-life value of health technologies. Further research should quantify the economic impact of automation in SLRs.

Keywords

References

  1. Syst Rev. 2019 Jul 11;8(1):163 [PMID: 31296265]
  2. Cureus. 2023 Aug 30;15(8):e44359 [PMID: 37779744]
  3. Syst Rev. 2015 Apr 17;4:50 [PMID: 25925676]
  4. JMIR Med Educ. 2021 May 31;7(2):e24418 [PMID: 34057072]
  5. Syst Rev. 2013 May 28;2:36 [PMID: 23714302]
  6. BMJ Evid Based Med. 2023 Nov 22;28(6):369-371 [PMID: 36797052]
  7. Contemp Clin Trials Commun. 2019 Aug 25;16:100443 [PMID: 31497675]
  8. Res Synth Methods. 2019 Mar;10(1):72-82 [PMID: 30561081]
  9. J Med Internet Res. 2020 Jul 7;22(7):e17707 [PMID: 32406850]
  10. Res Synth Methods. 2022 Jan;13(1):121-133 [PMID: 34747151]
  11. Ann Intern Med. 2007 Aug 21;147(4):224-33 [PMID: 17638714]
  12. BMJ Open. 2023 Jul 7;13(7):e072254 [PMID: 37419641]
  13. Syst Rev. 2020 Dec 13;9(1):293 [PMID: 33308292]
  14. Implement Sci. 2010 Jul 19;5:56 [PMID: 20642853]
  15. PLoS One. 2020 Jan 14;15(1):e0227742 [PMID: 31935267]
  16. J Clin Epidemiol. 2021 May;133:121-129 [PMID: 33485929]
  17. J Med Internet Res. 2020 Dec 30;22(12):e22422 [PMID: 33262102]
  18. J Am Med Inform Assoc. 2006 Mar-Apr;13(2):206-19 [PMID: 16357352]
  19. Syst Rev. 2012 Feb 10;1:10 [PMID: 22587960]
  20. Syst Rev. 2015 Jan 14;4:5 [PMID: 25588314]
  21. Syst Rev. 2023 Apr 29;12(1):72 [PMID: 37120563]
  22. BMC Med Res Methodol. 2021 Aug 16;21(1):169 [PMID: 34399684]
  23. Syst Rev. 2021 Apr 1;10(1):93 [PMID: 33795003]
  24. Science. 2015 Jul 17;349(6245):261-6 [PMID: 26185244]
  25. BMJ. 2021 Mar 29;372:n71 [PMID: 33782057]
  26. Value Health. 2022 Jul;25(7):1063-1080 [PMID: 35779937]
  27. Front Public Health. 2022 Jul 14;10:921226 [PMID: 35910914]
  28. Cancer Epidemiol. 2024 Feb;88:102511 [PMID: 38071872]
  29. JMIR Med Inform. 2015 Aug 31;3(3):e28 [PMID: 26323593]
  30. Pharmacoecon Open. 2024 Mar;8(2):191-203 [PMID: 38340276]
  31. BMJ Open. 2017 Feb 27;7(2):e012545 [PMID: 28242767]
  32. Syst Rev. 2015 Jun 15;4:78 [PMID: 26073888]
  33. Front Res Metr Anal. 2021 May 28;6:685591 [PMID: 34124534]
  34. J Am Med Inform Assoc. 2024 Apr 19;31(5):1172-1183 [PMID: 38520723]
  35. Syst Rev. 2018 Jan 09;7(1):3 [PMID: 29316980]
  36. Res Synth Methods. 2023 Mar;14(2):156-172 [PMID: 35798691]
  37. Front Pharmacol. 2022 May 11;13:887298 [PMID: 35645790]
  38. J Clin Epidemiol. 2018 Nov;103:101-111 [PMID: 30297037]
  39. Syst Rev. 2018 Nov 17;7(1):195 [PMID: 30447694]
  40. Int J Health Policy Manag. 2015 Nov 06;5(1):1-3 [PMID: 26673643]
  41. Pharmacoepidemiol Drug Saf. 2022 Sep;31(9):932-943 [PMID: 35729705]
  42. J Am Med Inform Assoc. 2021 Mar 18;28(4):890-894 [PMID: 33340404]
  43. Int J Comput Biol Drug Des. 2013;6(1-2):5-17 [PMID: 23428470]

Word Cloud

Created with Highcharts 10.0.0evidencereviewautomationAIworkloadefficienciesartificialintelligencetoolssynthesissystematicusedtimedecreasescanquantifiedefficiencymethodsarticlesreviewsmachinelearningtoolstudiesreductioneconomicimpactSLRsquantifyIntroduction:Researchersincreasinglyexploringuselabor-intensivetime-consumingcostlyeffortexploredpotentialbenefitsusingautomatedpartcoreactivitiescomparedhuman-ledMethods:searchedMEDLINEEmbasedatabasesEnglish-languagepublished201214November2023hand-searchedISPORpresentationsdatabase2020-2023presentingquantitativeresultsliteratureSLRutilizedDatatime-cost-relatedcollectedResults:identified25eligiblestudies:1310naturallanguageprocessingnon-specified17>50%observed5-to6-foldabstractnumberabstractsreviewedexamined55%-64%notedStudiesexaminingworksavedsampling95%recallreported6-10-foldassociatedalthoughonestudyfoundoveralllabor>75%manualdual-screenDiscussion:reducecreateappliedgatheringeffortsimprovementsfacilitateimplementationnovelapproachesdecisionmakingconsiderreal-lifevaluehealthtechnologiesresearchmuchsaveapplyingsynthesis?Resultspragmaticcostsavings

Similar Articles

Cited By

No available data.