A model for predicting factors affecting health information avoidance on WeChat.

Minghong Chen, Xiumei Huang, Yinger Wu, Shijie Song, Xianjun Qi
Author Information
  1. Minghong Chen: School of Information Management, Sun Yat-Sen University, Guangzhou, China.
  2. Xiumei Huang: School of Information Management, Sun Yat-Sen University, Guangzhou, China.
  3. Yinger Wu: School of Information Management, Sun Yat-Sen University, Guangzhou, China.
  4. Shijie Song: Business School, Hohai University, Nanjing, China. ORCID
  5. Xianjun Qi: Business School, Nanfang College Guangzhou, Guangzhou, China. ORCID

Abstract

Objective: WeChat serves as a crucial source of health information, distinguished by its highly personalized nature. Avoidance of such personalized health information has a direct impact on individuals' health decision-making. This study aims to identify the factors influencing personalized health information avoidance on WeChat and to construct a hierarchical framework illustrating the relationships among these factors.
Methods: A hybrid method was utilized. Semi-structured interviews and grounded theory were used to identify the influencing factors. The interpretive structural modeling (ISM) method was adopted to develop a hierarchical model of the identified factors, followed by matrice d'impacts croises-multiplication appliqu�� a un classemen (MICMAC) to analyze the dependence and driving power of each factor.
Results: The 20 predictors of personalized health information avoidance were broadly categorized into three groups: personal, informational, and social factors. These factors collectively form a three-tier explanatory framework, consisting of the top, middle and bottom layers. At the root layer, health characteristics and cognition exerted a strong driving force, while negative emotions and affective factors at the top layer showed a high degree of dependence. In contrast, the decision-making cognition, informational factors, and social factors in the middle layer exhibited relatively weaker driving force and dependence power.
Conclusion: This study bridged the research gap of information avoidance by providing new insights targeting the factors influencing personalized health information avoidance behavior on WeChat. It also contributed to enhancing personal health information management and the health information services provided on WeChat.

Keywords

References

  1. J Adv Nurs. 1994 Feb;19(2):328-35 [PMID: 8188965]
  2. Front Psychol. 2022 May 23;13:892771 [PMID: 35677138]
  3. Health Info Libr J. 2015 Jun;32(2):107-19 [PMID: 25809822]
  4. Ann Behav Med. 2012 Oct;44(2):216-24 [PMID: 22740364]
  5. Inf Process Manag. 2021 Nov;58(6):102714 [PMID: 34539039]
  6. BMC Public Health. 2022 Jun 4;22(1):1115 [PMID: 35658937]
  7. Psychooncology. 2024 Jan;33(1):e6299 [PMID: 38282227]
  8. Cogn Behav Ther. 2013;42(3):224-32 [PMID: 23721612]
  9. Int J Inf Manage. 2023 Apr;69:102596 [PMID: 36415624]
  10. Front Public Health. 2021 Nov 25;9:775729 [PMID: 34900917]
  11. Front Public Health. 2024 Jun 20;12:1348673 [PMID: 38966697]
  12. Sci Commun. 2020 Oct;42(5):586-615 [PMID: 38603002]
  13. BMC Med Inform Decis Mak. 2017 Jul 5;17(Suppl 2):66 [PMID: 28699549]
  14. J Health Care Poor Underserved. 2012 Nov;23(4):1620-9 [PMID: 23698676]
  15. Br J Cancer. 2013 May 28;108(10):1949-56 [PMID: 23681189]
  16. J Surg Educ. 2019 Sep - Oct;76(5):1293-1302 [PMID: 30879943]
  17. Psychol Aging. 2018 May;33(3):473-481 [PMID: 29446967]
  18. Inf Process Manag. 2021 Mar;58(2):102440 [PMID: 33281273]
  19. Inf Process Manag. 2023 Jan;60(1):103163 [PMID: 36405670]
  20. BMC Health Serv Res. 2020 Nov 20;20(1):1055 [PMID: 33213422]
  21. BMC Res Notes. 2022 Feb 5;15(1):27 [PMID: 35123549]
  22. Nurs Inq. 2019 Jan;26(1):e12261 [PMID: 30123965]
  23. PLoS One. 2023 Sep 14;18(9):e0286712 [PMID: 37708142]
  24. Cancer Causes Control. 2017 Apr;28(4):351-360 [PMID: 28255678]
  25. Health Commun. 2024 Nov;39(13):3365-3379 [PMID: 38477307]
  26. Health Commun. 2023 Oct;38(11):2336-2349 [PMID: 35514105]
  27. Digit Health. 2024 May 15;10:20552076241255654 [PMID: 38766359]
  28. Psychol Health. 2023 Nov 10;:1-23 [PMID: 37950399]
  29. Child Health Care. 1995 Winter;24(1):47-60 [PMID: 10142085]
  30. Front Psychol. 2024 Aug 16;15:1412515 [PMID: 39228876]
  31. Malar J. 2022 Dec 13;21(1):381 [PMID: 36514171]
  32. Health Commun. 2020 Mar;35(3):322-330 [PMID: 30606065]
  33. Health Commun. 2017 Jul;32(7):828-836 [PMID: 27466693]
  34. Int Nurs Rev. 2023 Mar;70(1):34-42 [PMID: 35639606]
  35. Int J Med Inform. 2023 Oct;178:105199 [PMID: 37647674]
  36. Psychol Bull. 2009 Jul;135(4):555-88 [PMID: 19586162]
  37. Ann Behav Med. 2023 Jul 19;57(8):687-692 [PMID: 37318275]
  38. JAMIA Open. 2024 May 30;7(2):ooae047 [PMID: 38818115]
  39. J Med Internet Res. 2021 May 12;23(5):e17917 [PMID: 33978589]
  40. Front Psychol. 2022 Feb 03;13:837820 [PMID: 35185742]
  41. Soc Sci Med. 2024 Jan;340:116383 [PMID: 38039766]
  42. Health Commun. 2019 Dec;34(14):1764-1774 [PMID: 30358416]
  43. J Health Psychol. 2022 Mar;27(3):713-725 [PMID: 33086899]
  44. J Clin Nurs. 2023 Apr;32(7-8):1230-1239 [PMID: 35403320]
  45. J Adv Nurs. 2004 Dec;48(6):605-12 [PMID: 15548251]
  46. Perspect Psychol Sci. 2023 Oct 11;:17456916231197668 [PMID: 37819241]
  47. Health Commun. 2024 May;39(5):1038-1052 [PMID: 37072691]
  48. J Health Commun. 2016 Jul;21(7):837-44 [PMID: 27337343]
  49. Ann Behav Med. 2013 Apr;45(2):258-63 [PMID: 23225264]
  50. J Behav Med. 2024 Jun;47(3):504-514 [PMID: 38460064]
  51. J Med Internet Res. 2024 Sep 9;26:e49362 [PMID: 39250213]
  52. Healthcare (Basel). 2022 Jul 25;10(8): [PMID: 35893203]
  53. Inf Process Manag. 2021 Jan;58(1):102407 [PMID: 33041437]
  54. Nat Hum Behav. 2020 Dec;4(12):1285-1293 [PMID: 33122812]
  55. Psychooncology. 2022 Mar;31(3):442-449 [PMID: 34549858]
  56. Health Commun. 2024 Nov;39(13):3225-3237 [PMID: 38314777]
  57. J Health Commun. 2012;17(2):212-29 [PMID: 22004015]
  58. J Med Internet Res. 2024 Mar 8;26:e54107 [PMID: 38457223]
  59. Behav Sci (Basel). 2023 Mar 17;13(3): [PMID: 36975292]
  60. Patient Educ Couns. 2020 Jan;103(1):15-32 [PMID: 31451363]

Word Cloud

Created with Highcharts 10.0.0healthfactorsinformationWeChatavoidancepersonalizedinfluencingmodeldependencedrivinglayerdecision-makingstudyidentifyhierarchicalframeworkmethodgroundedtheoryISMpowerpersonalinformationalsocialtopmiddlecognitionforcebehaviorObjective:servescrucialsourcedistinguishedhighlynatureAvoidancedirectimpactindividuals'aimsconstructillustratingrelationshipsamongMethods:hybridutilizedSemi-structuredinterviewsusedinterpretivestructuralmodelingadopteddevelopidentifiedfollowedmatriced'impactscroises-multiplicationappliqu��unclassemenMICMACanalyzefactorResults:20predictorsbroadlycategorizedthreegroups:collectivelyformthree-tierexplanatoryconsistingbottomlayersrootcharacteristicsexertedstrongnegativeemotionsaffectiveshowedhighdegreecontrastexhibitedrelativelyweakerConclusion:bridgedresearchgapprovidingnewinsightstargetingalsocontributedenhancingmanagementservicesprovidedpredictingaffecting

Similar Articles

Cited By