Anthropogenic Water Withdrawals Modify Freshwater Inorganic Carbon Fluxes across the United States.

Elizabeth M Flint, Matthew J Ascott, Daren C Gooddy, Mason O Stahl, Ben W J Surridge
Author Information
  1. Elizabeth M Flint: British Geological Survey, Maclean Building, Crowmarsh, Wallingford, Oxfordshire OX10 8BB, U.K. ORCID
  2. Matthew J Ascott: British Geological Survey, Maclean Building, Crowmarsh, Wallingford, Oxfordshire OX10 8BB, U.K. ORCID
  3. Daren C Gooddy: British Geological Survey, Maclean Building, Crowmarsh, Wallingford, Oxfordshire OX10 8BB, U.K. ORCID
  4. Mason O Stahl: Department of Geosciences, Union College, Schenectady, New York 12308, United States.
  5. Ben W J Surridge: Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K. ORCID

Abstract

Quantifying inorganic carbon fluxes to and from freshwater environments is essential for the accurate determination of the total amount of carbon exported to both the atmosphere and oceans. However, understanding of how anthropogenic freshwater withdrawals perturb land-freshwater-ocean and freshwater-atmosphere inorganic carbon fluxes is limited. Using the United States (US) as an exemplar, we estimate that fresh surface water withdrawals across the country during the year 2015 resulted in a median gross dissolved inorganic carbon (DIC) retention flux of 8.2 (uncertainty range: 6.7-9.9) Tg C yr, equivalent to 28.3% of the total export of DIC to the oceans from US rivers. The median gross retention flux due to fresh groundwater withdrawals was 6.9 (uncertainty range: 5.3-8.8) Tg C yr, over eight times the magnitude of the DIC flux to the oceans by US subterranean groundwater discharge. The degassing of CO supersaturated groundwater following withdrawal emitted 3.6 (uncertainty range: 2.2-5.5) Tg of CO yr, 112% larger than previous estimates. On a county level, these CO emissions exceeded CO emissions from major emitting facilities across 45% of US counties. Reported results and a data analysis framework have important implications for the accurate development of carbon budgets across the US and around the world.

Keywords

References

  1. Sci Rep. 2022 Jan 10;12(1):464 [PMID: 35013460]
  2. Sci Total Environ. 2017 Jan 1;575:496-512 [PMID: 27769641]
  3. Nat Commun. 2017 Nov 22;8(1):1694 [PMID: 29162815]
  4. Nature. 2022 Mar;603(7901):401-410 [PMID: 35296840]
  5. Sci Total Environ. 2015 Oct 1;529:82-90 [PMID: 26005752]
  6. Glob Chang Biol. 2021 Feb;27(4):719-727 [PMID: 33200491]
  7. Environ Sci Technol. 2018 May 15;52(10):5590-5599 [PMID: 29658719]
  8. Water Air Soil Pollut. 2015;226: [PMID: 31527988]
  9. Environ Pollut. 2022 Sep 15;309:119714 [PMID: 35817299]
  10. Science. 2015 Feb 13;347(6223):1259855 [PMID: 25592418]
  11. Science. 2016 Aug 12;353(6300):705-7 [PMID: 27492476]
  12. Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):58-63 [PMID: 26699473]
  13. Environ Sci Technol. 2015 Jul 07;49(13):7614-22 [PMID: 26061185]
  14. Environ Sci Technol. 2022 Oct 4;56(19):13920-13930 [PMID: 36130151]
  15. Ecosystems. 2018;21(5):1058-1071 [PMID: 30607138]
  16. Nat Commun. 2024 Jan 23;15(1):675 [PMID: 38253564]
  17. Sci Data. 2023 Apr 11;10(1):201 [PMID: 37041220]
  18. Nat Commun. 2020 Mar 9;11(1):1279 [PMID: 32152271]
  19. Nature. 2013 Nov 21;503(7476):355-9 [PMID: 24256802]
  20. Glob Chang Biol. 2022 Oct;28(19):5601-5629 [PMID: 35856254]
  21. Nat Commun. 2024 Apr 10;15(1):3084 [PMID: 38600059]
  22. Environ Sci Technol. 2020 Dec 1;54(23):15329-15337 [PMID: 33186025]

MeSH Term

United States
Fresh Water
Carbon
Groundwater
Environmental Monitoring
Carbon Dioxide

Chemicals

Carbon
Carbon Dioxide

Word Cloud

Similar Articles

Cited By