DNA methyltransferase 3A: A prognostic biomarker and potential target for immunotherapy in gastric cancer.

Zijie Wei, Ziqian Kou, Yun Luo, Yu Cheng
Author Information
  1. Zijie Wei: College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China. ORCID

Abstract

DNA methyltransferase 3A (DNMT3A) has been associated with the occurrence or progression of various tumors, including gastric cancer. However, the role of DNMT3A in the efficacy of immune-cell infiltration in the tumor microenvironment and immunotherapy in gastric cancer remains less explored. DNMT3A expression level was analyzed using TIMER 2.0, Sangerbox 3.0, and The Cancer Genome Atlas database and further verified by immunohistochemical staining and RT-qPCR. The UALCAN, chi-square test, and Kaplan-Meier plotter databases were performed to assess the correlation of DNMT3A with clinicopathological characteristics and prognosis. The GeneMANIA database, STRING database, and R package were used to construct a DNMT3A co-expression gene network. Gene set enrichment analysis was used to identify the signaling pathways related to DNMT3A expression. The correlations between DNMT3A and cancer immune infiltrates were investigated using TIMER 2.0, Sangerbox 3.0, Kaplan-Meier Plotter, R package, and TISIDB databases. The TISIDB database and R package were used to construct the correlation between DNMT3A and immunomodulators and Immune cell Proportion Score. The association of DNMT3A expression with tumor mutational burden (TMB), microsatellite instability, and tumor dryness was evaluated using the TMB function of the R package, TIMER 2.0. Finally, the biological function of DNMT3A in gastric cancer cells was further assessed by CCK-8, cloning formation, and transwell assay. DNMT3A expression was remarkably upregulated in gastric cancer. The high expression of DNMT3A was associated with poor clinical features and poor survival in patients with gastric cancer. Moreover, gene set enrichment analyses showed that DNMT3A and its related genes were involved in various pathways that promoted cancer occurrence and progression by influencing the tumor microenvironment. Finally, DNMT3A was significantly related to tumor-infiltrating immune cells, immunomodulators, TMB, microsatellite instability, and immune checkpoints in gastric cancer. Moreover, knockdown of DNMT3A reduced the proliferation and migration of gastric cancer cells. Our findings highlight the potential of DNMT3A as a prognosis biomarker and an immunotherapeutic target for gastric cancer.

References

  1. Pathol Res Pract. 2024 Mar;255:155169 [PMID: 38330617]
  2. Cancer Immunol Immunother. 2022 Jan;71(1):121-136 [PMID: 34028567]
  3. Biochim Biophys Acta Rev Cancer. 2021 Dec;1876(2):188615 [PMID: 34403771]
  4. J Cell Mol Med. 2024 Mar;28(5):e18101 [PMID: 38165009]
  5. World J Gastroenterol. 2024 Jan 28;30(4):286-289 [PMID: 38313231]
  6. Ann Surg Oncol. 2023 Dec;30(13):8572-8587 [PMID: 37667098]
  7. Genome Biol. 2017 Nov 15;18(1):220 [PMID: 29141660]
  8. Nat Genet. 2019 Feb;51(2):202-206 [PMID: 30643254]
  9. Curr Mol Med. 2024;24(12):1461-1469 [PMID: 39420726]
  10. Histol Histopathol. 2008 Dec;23(12):1439-52 [PMID: 18830930]
  11. Cancer Treat Res. 2024;192:277-303 [PMID: 39212926]
  12. Imeta. 2022 Jul 08;1(3):e36 [PMID: 38868713]
  13. Brief Bioinform. 2023 Jan 19;24(1): [PMID: 36549921]
  14. Clin Cancer Res. 2019 Oct 15;25(20):6160-6169 [PMID: 31337644]
  15. Cells Dev. 2023 Jun;174:203827 [PMID: 36758856]
  16. CA Cancer J Clin. 2024 May-Jun;74(3):229-263 [PMID: 38572751]
  17. World J Gastroenterol. 2024 Feb 28;30(8):779-793 [PMID: 38516237]
  18. Cancer Sci. 2024 Jun;115(6):1738-1748 [PMID: 38528657]
  19. J Cancer. 2023 Sep 4;14(15):2833-2844 [PMID: 37781082]
  20. Breast Cancer Res Treat. 2016 Dec;160(3):439-446 [PMID: 27744485]
  21. Chin Med J (Engl). 2024 Mar 5;137(5):524-532 [PMID: 37646139]
  22. Nat Med. 2018 Oct;24(10):1550-1558 [PMID: 30127393]
  23. Neoplasia. 2017 Aug;19(8):649-658 [PMID: 28732212]
  24. Front Immunol. 2022 Jul 01;13:948647 [PMID: 35844558]
  25. Bioinformatics. 2019 Oct 15;35(20):4200-4202 [PMID: 30903160]
  26. Int J Mol Sci. 2024 Jul 09;25(14): [PMID: 39062758]
  27. Biochim Biophys Acta Mol Basis Dis. 2022 Apr 1;1868(4):166353 [PMID: 35063646]
  28. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W214-20 [PMID: 20576703]
  29. Cell. 2023 Apr 13;186(8):1814-1814.e1 [PMID: 37059073]
  30. CA Cancer J Clin. 2024 Jan-Feb;74(1):12-49 [PMID: 38230766]
  31. J Cell Physiol. 2019 Feb;234(2):1313-1325 [PMID: 30191996]
  32. Front Cell Dev Biol. 2022 May 10;10:916725 [PMID: 35620052]
  33. Cancer Cell Int. 2024 Aug 3;24(1):272 [PMID: 39097730]
  34. Int J Mol Sci. 2022 Jan 20;23(3): [PMID: 35163019]
  35. Nature. 2018 Feb 15;554(7692):387-391 [PMID: 29414941]
  36. Front Immunol. 2022 Oct 20;13:954992 [PMID: 36341428]
  37. Mol Cancer. 2020 Sep 24;19(1):145 [PMID: 32972405]
  38. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  39. Mol Med Rep. 2011 Nov-Dec;4(6):1139-43 [PMID: 21887466]
  40. Cancer Immunol Res. 2019 May;7(5):737-750 [PMID: 30842092]
  41. Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613 [PMID: 30476243]
  42. Contemp Oncol (Pozn). 2015;19(1A):A68-77 [PMID: 25691825]
  43. Methods Mol Biol. 2018;1711:243-259 [PMID: 29344893]
  44. Nat Cancer. 2023 Mar;4(3):317-329 [PMID: 36894637]
  45. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2024 Aug 10;41(8):1010-1015 [PMID: 39097288]
  46. Eur J Med Res. 2023 Nov 8;28(1):492 [PMID: 37936161]
  47. Oncology. 2005;69 Suppl 3:4-10 [PMID: 16301830]
  48. J Clin Med Res. 2019 Apr;11(4):225-236 [PMID: 30937112]
  49. Haematologica. 2023 Dec 01;108(12):3308-3320 [PMID: 37381752]
  50. Front Immunol. 2024 Aug 15;15:1426418 [PMID: 39211052]
  51. Nat Commun. 2013;4:2612 [PMID: 24113773]
  52. Cancer Control. 2022 Jan-Dec;29:10732748221099227 [PMID: 35499497]
  53. World J Gastroenterol. 2023 May 7;29(17):2515-2533 [PMID: 37213407]
  54. Nucleic Acids Res. 2020 Jul 2;48(W1):W509-W514 [PMID: 32442275]
  55. Apoptosis. 2011 Nov;16(11):1150-64 [PMID: 21877214]
  56. Crit Rev Oncol Hematol. 2024 Jun;198:104197 [PMID: 37951282]
  57. Cancer Sci. 2020 Aug;111(8):2696-2707 [PMID: 32519436]

Grants

  1. 2024076/the Chengde Medical University Student Innovation and Entrepreneurship Training Program
  2. 2023023/the Chengde Medical University Student Innovation and Entrepreneurship Training Program
  3. No. H2022406025/the Natural Science Fund of Hebei
  4. No. BJK2023001/the Science and Technology Project of Hebei Education Department
  5. No. 202201/the High-level Talents Research Startup Fund of Chengde Medical College

MeSH Term

Stomach Neoplasms
Humans
DNA Methyltransferase 3A
Biomarkers, Tumor
Immunotherapy
Prognosis
Female
DNA (Cytosine-5-)-Methyltransferases
Male
Tumor Microenvironment
Middle Aged
Aged
Gene Expression Regulation, Neoplastic
Kaplan-Meier Estimate
Microsatellite Instability

Chemicals

DNA Methyltransferase 3A
Biomarkers, Tumor
DNMT3A protein, human
DNA (Cytosine-5-)-Methyltransferases

Word Cloud

Created with Highcharts 10.0.0DNMT3Acancergastricexpression0tumordatabaseRpackageusingTIMER2usedrelatedimmuneTMBcellsDNAmethyltransferaseassociatedoccurrenceprogressionvariousmicroenvironmentimmunotherapySangerbox3Kaplan-MeierdatabasescorrelationprognosisconstructgenesetenrichmentpathwaysTISIDBimmunomodulatorsmicrosatelliteinstabilityfunctionFinallypoorMoreoverpotentialbiomarkertarget3AtumorsincludingHoweverroleefficacyimmune-cellinfiltrationremainslessexploredlevelanalyzedCancerGenomeAtlasverifiedimmunohistochemicalstainingRT-qPCRUALCANchi-squaretestplotterperformedassessclinicopathologicalcharacteristicsGeneMANIASTRINGco-expressionnetworkGeneanalysisidentifysignalingcorrelationsinfiltratesinvestigatedPlotterImmunecellProportionScoreassociationmutationalburdendrynessevaluatedbiologicalassessedCCK-8cloningformationtranswellassayremarkablyupregulatedhighclinicalfeaturessurvivalpatientsanalysesshowedgenesinvolvedpromotedinfluencingsignificantlytumor-infiltratingcheckpointsknockdownreducedproliferationmigrationfindingshighlightimmunotherapeutic3A:prognostic

Similar Articles

Cited By